

Operation Manual Microtector III G888

1 to 7 gas warning devices

GFG GESELLSCHAFT FÜR GERÄTEBAU MBH KLÖNNESTRASSE 99 D-44143 DORTMUND PHONE +49 (0)2 31 / 5 64 00 -0 FAX +49 (0)2 31 / 51 63 13 INFO@GFG-MBH.COM WWW.GASMESSUNG.DE DORTMUND COUNTY COURT HR B 2742 CERTIFIED ACCORDING TO DIN EN ISO 9001:2015 ATEX QM CERTIFIED Measurable safety by using GfG devices

Congratulations!

You have chosen a precision instrument made by GfG. A very good choice!

Since reliability, safety, optimum performance and efficiency distinguish our devices.

They comply with the national and international directives.

These operating instructions will help you to rapidly and safely operate the device.

Please strictly follow our operating instructions before commissioning!

Our employees will be at your service at any time in case of inquiries.

Yours

GfG Gesellschaft für Gerätebau mbH

Klönnestraße 99 D-44143 Dortmund Phone: +49(0)231 – 564 00-0 Fax: +49(0)231 – 51 63 13 E-mail: info@gfg-mbh.com Internet: www.gasmessung.de

Table of contents

		Page
1 1	INTRODUCTION	5
1.1	For your safety	5
1.2	Area of use and application	5
1.3	Special conditions for the safe use	5
1.4	Design	6
2 (OPERATING INSTRUCTIONS	7
2.1		7
2.1		7
2.1		8
2.2	Measuring mode	8
2.2 2.2		8 9
2.2	2.3 Acknowledging the gas alarms	9
2.2		10
2.2 2.2		10 10
2.2		10
2.2		11
2.2	2.9 Turning the display 2.10 Use of the flashlight	11 11
	2.11 Display lighting	11
2.2	P.12 Peculiarities when monitoring in the LEL range	11
	 Influence of oxygen and interference gases Recording of measurement data with the data logger 	12 12
	 Recording of measurement data with the data logger Wireless data transfer 	12
2.3		12
2.3		13
	2.3.1.1 Place – Choice of a measuring point 2.3.1.2 Name – Choice of a device user	13
	1.3.1.3 AutoCal – Menu for AutoCal adjustment	13 13
2	.3.1.4 Sensor overview	14
	2.3.1.5 System information	14
2.3	3.2 Service menu 2.3.2.1 System menu for system settings	14 15
-	2.3.2.1.1 Bump test	15
	2.3.2.1.2 Sensor adjustment (zero point and calibration)	15
	2.3.2.1.3 Maintenance 2.3.2.1.4 Time	15 16
	2.3.2.1.5 System options	16
	2.3.2.1.6 Sensor choice – activation / deactivation of sensors	17
	2.3.2.1.7 AutoCal air - Sensor release for AutoCal adjustment	17
2	2.3.2.1.8 AutoCal gas sensor release for AutoCal adjustment 2.3.2.2 Sensor menu for sensor settings	17 17
	2.3.2.2.1 Zero - Adjusting the zero point	18
	2.3.2.2.2 Calibrating - Sensitivity adjustment	18
	2.3.2.2.3 Alarms - Alarm setting 2.3.2.2.4 Calibration data	19 19
	2.3.2.2.5 Information	19
	2.3.2.2.6 Measuring range	20
	2.3.2.3 Data logger settings	20
2.4 2.4	Energy supply 1.1 Charging the device battery	21
2.4		21 22
2.4		22
3 A	ANNEX	23
3.1	Maintenance	23
3.2	Maintenance and inspection	23
3.3	Maintenance - Repair	23
3.4	Calibration device	23
3.5	Inspection with the docking station DS400	24
3.6	Malfunction, cause, remedy	24
3.7	Accessories and spare parts	25
3.8	Indications regarding the environmentally friendly disposal	26

3.9	Sensor types and measuring ranges	26
3.10	Sensor specification	27
3.11	Alarm limit values - Basic setting	32
3.12	Technical data	33
3.13	EC Declaration of conformity and EC Type examination certificate	34

1 Introduction

1.1 For your safety

These operating instructions point to the intended use of the product and serve to avoid dangers according to § 3 of the Product Safety Act. It must be read and observed by everyone who operates, services, maintains and inspects this product. This particularly applies for the safety notes in these operating manual

which are marked with the icon \triangle . This device can serve its intended purpose only if it is operated, serviced, maintained and inspected according to the instructions given by the Gesellschaft für Gerätebau mbH. The warranty assumed by the company GfG Gesellschaft für Gerätebau mbH forfeits, if it is not used, cared for, maintained and controlled according to the specifications of the company GfG.

The above mentioned does not change the indications about the warranty and liability in the sales and delivery conditions of the company GfG. Any repair works may only be performed by professionals or assigned employees. Any conversions and modifications on the product may only be performed with the approval of the GfG. Any unauthorised changes on the product exclude a liability for damages. Only use accessories made by the GfG together with the product. Use the spare parts released by the GfG for any repairs.

A functional test **has to** be performed on every working day before each use - a calibration <u>and, if</u> <u>applicable, an adjustment needs to be performed every 4 months</u>.

1.2 Area of use and application

The G888 is a hand-held meter which serves for the personal protection against dangers caused by toxic or explosive gases and vapours as well as by lack of or excess oxygen. The G888 permanently measures in the diffusion mode and warns the employee carrying the device in case of an occurring gas hazard with a visual and acoustical alarm.

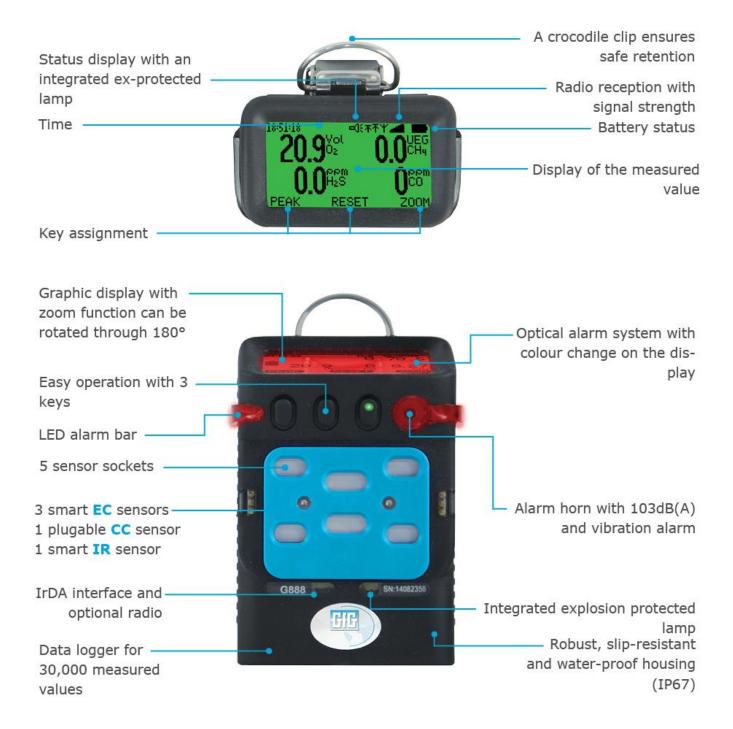
The G888 has been tested by the DEKRA EXAM GmbH concerning the use in potentially explosive atmospheres and possesses a corresponding EU type examination certificate according to the directive 2014/34/EU as well as an IECEx certificate.

Certificates:

BVS 15 ATEX E 064 X IECEx BVS 15.0056 X

Labelling: **G888C** I M2 Ex ia db I Mb II 2G Ex ia db IIC T4 Gb -20°C \leq Ta \leq +50°C

1.3 Special conditions for the safe use


Caution: If the device is used in potentially explosive areas or the group I (mining), the G888 needs to be used as intended. I.e. the device needs to be carried on the body and must not be deposited unattended in order to avoid mechanic stress by impacts. It is intended for the low degree of mechanic danger according to the EN 60079-0. The gas measurement device has to be immediately removed for the potentially explosive area and has to be cleaned, if it is soiled with oils and greases or hydraulic fluid.

Before each use, it is necessary to check the gas readings of flammable gases and vapours for zero gas and for test gas. If the gas readings show a continuous zero offset in an environment exempted from measuring gas (fresh air), a zero point adjustment needs to be performed.

In particular after a heavy impact, the zero points of the sensors need to be controlled and readjusted, if required. If the catalytic combustion sensor would cause that the measuring range has been exceeded """ due to an impact stress, this alarm needs to be acknowledged with fresh air and, if applicable, the zero point needs to be readjusted.

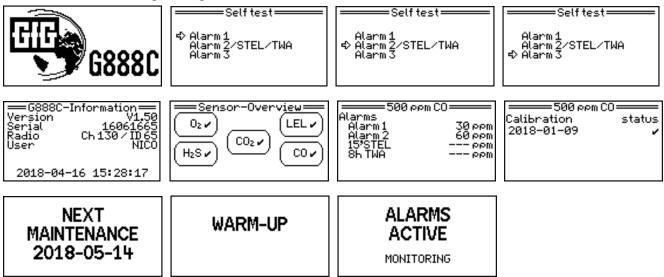
If the G888 is being operated without interruption for more than one day, it should be switched off and on latest after 24 hours.

1.4 Design

2 Operating Instructions

2.1 Commissioning

2.1.1 Switching the device on and off

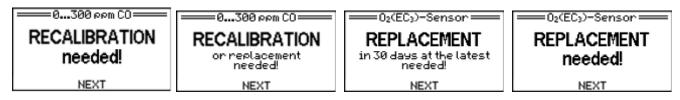


Switch on the device by briefly pressing the right button

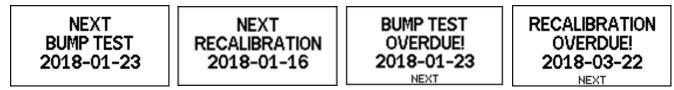
Switch off the device by pressing the right button \blacksquare for about 5 seconds. Release the button when the display "Switch off / 0" is shown.

When charging the device, the normal measuring mode is automatically switched off and the past charging time will be displayed.

After having switched off the device, it performs a **self-test** and gives information about the Firmware version, the built-in sensors with their measuring ranges and the alarm thresholds as well as the date of the next inspection. During the self-test, the visual and acoustical signal transmitters will be controlled in a way that the user would recognise a gas alarm.



Alarm thresholds and calibration data will be displayed for all available sensors. Please find an example of CO below. Depending on the condition of the sensors, other messages will be output, which possibly need to be acknowledged. Please find more detailed information in the section "Other messages when starting the device".

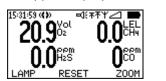

After having switched on the device and the passing of the messages, the device will be ready for operation after about one minute. By pressing the centre button, it is possible to acknowledge displays and messages.

2.1.2 Other messages when starting the device

The G888 will test the sensors when starting the device and monitors the adjustment data. For a sensor, which had not been adjusted yet or which had been adjusted more than one year ago, the message "Sensor adjustment required!" will be the output. Since almost used up sensors might have a reduced adjustment interval in which case the message "Sensor adjustment or sensor replacement required!" will be the output. In case of used up sensors, the message "Sensor replacement required!" will be the device would be started. These messages need to be acknowledged by pressing the button.

If a docking station is used to check the device, then the intervals for the functional test and for the sensor adjustment might have been set in the G888. The dates for the next functional test or the next sensor adjustment automatically result of the time of the last tests. Depending on what will be due next, the date of the next functional test or of the next sensor adjustment will be displayed when starting the device. If a date has already been exceeded, the G888 will notify this "overdueness". These messages need to be acknowledged by pressing the button.

2.2 Measuring mode

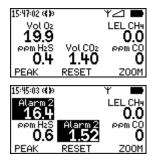


The G888 is ready for operation if the time, the battery icon and all measured values are displayed with the measuring gas and the unit.

It is monitored if the measured gas concentrations exceed the preset limit values and in case of oxygen it is monitored if the measured values fall below the preset limit values.

2.2.1 Display of the measured values, icons and key functions

Depending on the selected function or on the activated device option, also other icons can be displayed in the upper display row.



- Motion detection (see section 2.2.5)
- Flashlight (see section 2.2.10)
- **∓**[∓] Peak display of peak values (see section 2.2.8)
- T 🛋 Radio and field strength (see section 2.2.15)
- Battery capacity (see section 2.2.4)

The current functions of the three keys are always displayed in the bottom display row. In this case, it is possible to switch the **PEAK** mode on and off by briefly pressing the left key. The gas alarms can be acknowledged by briefly pressing the centre key (**RESET**). It is possible to change over to the **ZOOM** display or to the detail view by briefly pressing the right key.

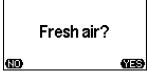
2.2.2 Monitoring and gas alarms

If the measured gas concentration exceeds (falls below 0) a preset limit value, an acoustical and visual alarm will be immediately emitted. It is possible to read from the display which gas has triggered the alarm. The alarm-triggering measured value is displayed inverted every second.

On the left in the picture, the alarm is triggered by a high CO2 reading. In addition to the inverted display alternates "Vol CO2" / "Alarm 2".

An extremely loud acoustical alarm (103dB(A) @30cm) and a bright visual allround alarm provide for a safe warning in case of a gas hazard. In case of a gas alarm, the whole display will be coloured orange or red, depending on the alarm condition. The device has up to three alarm levels. The pre-alarm Alarm 1 is not self-holding, whereas the main alarms Alarm 2 and Alarm 3 are selfholding (factory setting). The G888 makes three limit value alarms available for oxygen and flammable gases (e.g. CH4) and it makes two momentary value alarms available for toxic gases (e.g. CO, H2S).

An exposition value alarm can additionally be emitted for the toxic gases if the long-term and the short-term exposure value (TWA and STEL) have been exceeded. Also refer to the sections "Alarm limit value - Basic setting" and "Alarms - Alarm setting". In addition, the alarming can be performed with a vibrator.


Type of alarm	Sensors	Number of alarms	Description
Flammable 3 ga		3	A momentary value alarm is immediately being triggered, if the gas concentration exceeds or falls below a preset value (O_2). The momentary value alarms cannot be set.
short-term value (STEL)	Toxic gases	1	The short-term value (STEL) refers to a period of time of 15 minutes and the mean will be taken over this period of time. The STEL alarm is not self-holding. It will automatically switch off as soon as the short-term limit value falls below once again.
Long-term value (TWA)		1	The long-term value (TWA) refers to a period of time of a working shift of 8 hours and the mean will be taken over this period of time. The TWA alarm cannot be reset. It will only be switched off, if the device is being switched off.

The alarms will be prioritised as follows: Power error, exceeding the measuring range, AL3, TWA > AL2, STEL > AL1, falling below the measuring range > temperature error.

2.2.3 Acknowledging the gas alarms

The momentary value alarms 2 and 3 are self-holding (factory setting) and can only be reset by pressing the button \mathbb{RESET} , if it falls below or exceeds the preset limit values at O_2 . The momentary value alarm 1 is not self-holding and will be automatically reset as soon as the alarm condition does no longer exist.

If the measuring range is exceeded on the catalytic combustion sensor (e.g. CH_4), for gas concentrations above 110 % LEL or above 5.5Vol.% CH_4 arrows \ref{MM} showing upwards will be displayed instead of the gas display. The sensor will be deactivated in order that it will not be damaged. The alarm signalling and the arrows \ref{MM} showing upwards will be maintained. The alarm signalling can only be terminated by pressing the button **RESET**. Then, the following questions will be displayed:

Only if it is made sure that **there is no flammable gas on the sensor, but only fresh air, the question may be answered with YES**. In this case, the sensor will be reactivated and will display measured values after a short running-in period!

Please find further details in the section "Peculiarities when monitoring the LEL range".

2.2.4 Battery capacity and battery alarm

In the measuring mode, the capacity of the battery can be read from the state of charge battery icon on the right of the display. The black filling represents the remaining capacity. By pressing the right button (**ZOOM**) several times, if required, it is also possible to display the remaining capacity as a figure. (*1)

Generally, the fully charged battery would have a capacity for a continuous operation of more than 7 hours (8...65 hours depending on the sensor combination - also refer to the technical data). The service life can be reduced by alarms. If the state of charge drops to such a low level that the state of charge icon is no longer filled out, the device will switch to the "Energy-saving mode". From this moment on, the green display lighting will no longer be activated when pressing a button. In case of a gas alarm, the red display lighting will also no longer be used. Then, the alarm signalling only occurs with the red alarm LEDs with a maximum horn volume of 90dB(A). If the state of charge drops even further, the battery alarm would be triggered and signalled acoustically. In this condition, the state of charge icon will flash. The maximum remaining service life is displayed in minutes. After 15 minutes, the device will automatically switch off with a clear acoustical signal. Then, the message "OFF" will be displayed for 5 minutes. If the function "Anti-Lazy-Battery" has been activated in the option menu, the device will not be automatically switched off after 15 minutes, but only when the minimum voltage falls below.

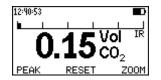
2.2.5 Motion detection and Man-Down Alarm

The G888 offers the option to monitor the movement of the device user. This option can be used for applications if no other person is within close proximity.

If the device user cannot act for himself any more, he can rapidly call for help by the acoustical alarm signalling or by radio.

If the motion detection is switched on, it is displayed in the top display row by the motion icon 4

If the internal motion sensor does not detect any motion during a defined period of time, an optical and acoustical MAN-DOWN-ALARM will be triggered after a warning time of 30 seconds. Then, this alarm can be reset by a keystroke. During the warning time, the timer can be reset by moving the device or by a keystroke.


If the device is equipped with a radio module, the motionless time and, if applicable, a triggered MAN-DOWN-ALARM will be transmitted together with the gas measurement values.

The motion detection is set in the service menu under System / System options / Man-Down-Alarm (see section 2.3.2.1.5).

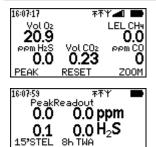
2.2.6 Short-term, Long term, Maximum, Minimum values

After having switched on the device, it will continuously measure in the diffusion mode. All concentrations will be displayed in this operating mode. In addition, short-term and long term values (STEL and TWA) will be formed for toxic gases and maximum (MAX) and only for oxygen O₂ minimum (MIN) values will be saved. These saved values can be displayed on the screen if the screen is switched over to the corresponding display mode by pressing the right button **ZOOM**.

2.2.7 Zoom display and detail view

In order to be able to see the measured values magnified on the **Zoom** display, press the **right button** (**ZOOM**). Briefly press the button in order to zoom a displayed value. By pressing the right button several times, you can zoom the display of the measured values of the individual sensors one after another.

When the display of a value is zoomed, you can long press the button **ZOOM** and change over to the following detail view:



Example: Detail view for CO₂

Top left:Maximum value (since switching on or since the last RESET)Top right:Current gas concentrationBottom left:Short-term value (15 minutes)Bottom right:Long-term value (8 hours)

Within one session you can change between the two zoom modes by long pressing the button $\boxed{\text{ZOOM}}$. After having activated a zoom display, the display generally skips to the normal view after about 10 seconds, depending on the configuration (system options). If the button $\boxed{\text{RESET}}$ is pressed in the zoom display, the maximum/minimum value memory will be reset to the current gas concentration.

2.2.8 Peak display of the peak values

RESET

PEAK

It is possible to continuously display peak values in the peak mode which is activated by pressing the button **PEAK**. On the screen in the top row, the peak icon $\overline{\mathbf{TT}}$ will be displayed with the two arrows.

The peak mode can be deactivated by pressing the button **PEAK**.

In the detail view of the zoom display on the top left the corresponding peak value is displayed instead of the max. or min gas concentration.

If the button **RESET** is pressed in the detail view, the peak value memory will be reset to the current gas concentration.

2.2.9 Turning the display

ZOOM

The G888 allows turning the measured value display by 180°. To do so, keep the left and right button pressed simultaneously and release it. In this way, the display can be easily read when the device is attached to the belt.

2.2.10 Use of the flashlight

It is reasonable to use the integrated flashlight e.g. if the device is lowered into a shaft or if it is used as a safe light source in dark potentially explosive areas.

The flashlight can be switched on by long pressing the left button (about 3 sec.) and it can be switched off by shortly pressing it.

The switched on flashlight is shown in the upper display line by the flashlight icon =

2.2.11 Display lighting

The display lighting is switched on by pressing any key for about 10 seconds and then it will automatically switch itself off. If the battery is quite heavily discharged, the display lighting will no longer be switched on when pressing a key.

2.2.12 Peculiarities when monitoring in the LEL range

For the monitoring of the LEL range, the G888 can be equipped with a sensor, which works according to the catalytic process (WT). Due to the measurement method, the G888 measured values in the LEL range cannot be distinguished from values in the increased Vol. % range (e.g. >20 Vol.% CH_4). Furthermore, the sensor would be damaged by concentrations above 110%LEL. In order to avoid such a damage, the sensor will be switched off if gas concentration above 110%LEL is being detected. Only by pressing the button **RESET** and confirming the question "Fresh air?" by pressing the button **MES** the sensor will be switched on again.

At an oxygen concentration of less than 10 Vol.% it would be no longer possible to measure flammable gases and vapours with the catalytic process (CC) without errors. Please find more details about this topic in the chapter "Influence of oxygen and interference gases".

2.2.13 Influence of oxygen and interference gases

For using the G888C with a pellistor, it is necessary to pay attention that the measurement for gas and / or vapour concentrations in the measurement range below 100% LEL cannot exactly be performed, if the oxygen concentrations are at the same time less than 10 Vol%. In this case, the oxygen which is necessary for the "catalytic combustion" is missing for the heat tone sensor. If the oxygen sensor would measure such a low concentration, question marks "????" will be displayed instead of the measured value in %LEL. If the oxygen concentration would increase above 10 Vol%, the measured value will be displayed correctly. The Ex approval does not apply for the use of the device in an oxygen-enriched atmosphere. Certain substances, which are designated as "Sensor or catalytic toxin" in the technical vocabulary, can impair the catalytic combustion sensor (CC) regarding its signal behaviour. The "sensitivity", i.e. the ability of the sensor to emit signals, decreases. Substances of this kind are for instance sulphur, lead and silicon compounds.

2.2.14 Recording of measurement data with the data logger

The measurement data can be recorded on the G888 with an internal data logger. No special activation of the data logging is required.

30.000 measuring points each can be recorded for up to 12 different measured values and other information. This includes date, time, measuring point, alarm triggering and special events.

In the menu item "data logger" of the service menu it is possible to set different functions of the data saving. It is possible to select the recording of average values, peak values or momentary value as well as the recording interval between 1 second and 60 minutes. The memory type is set to a ring memory at the factory. I.e. the oldest measured values will be overwritten as soon as the data logger is full. Measured data can be read with the help of a test station TS888/999 or a docking station DS400. The configuration of the data logger can be modified with the operating menu.

2.2.15 Wireless data transfer

If a corresponding radio module is built in the G888 and switched on, the current gas measurement values can also be requested and transferred by radio.

If the radio module is activated, the icons T = 1 for radio and field strength are displayed in the upper display row. The stronger the field strength icon = 1 = 1 and is filled in, the better is the radio connection. A flashing field strength icon = 1 signalises that currently no measured values are requested or that the radio connection is interrupted. If the icon TErr is displayed, the radio module is either defective or switched on but not existing at all.

Generally, the reach of the radio connection extremely depends on the structural circumstances between the sender and the receiver. At free visibility, a reach of 700m is possible with the 868MHz radio module. In buildings, the reach can considerably fall below 100m depending on the material, number and thickness of walls and other metallic components.

The device-specific setting of the radio address and also the radio channel is performed in the service menu under System / System options / Radio (refer to the paragraph 2.3.2.1.5).

2.3 Service mode

Access the service mode by pressing the centre button for about 3 seconds long **RESET**. In the service mode it is possible to set the G888 by modifying the program parameters. Some menu items can only be accessed via an access code "0011". The access code prevents that important functions might be accidentally modified or modified by unauthorised persons. An alarming cannot be performed in the service mode.

The main menu is the first menu item in the service mode.

2.3.1 Main menu

Menu control: The individual key functions will always be displayed by the labelling via the individual buttons on the screen.

Left button Centre button Right button

= Scrolling one menu item downward

SELECT = Choosing the highlighted menu item

DETECT = Back to the measurement operation

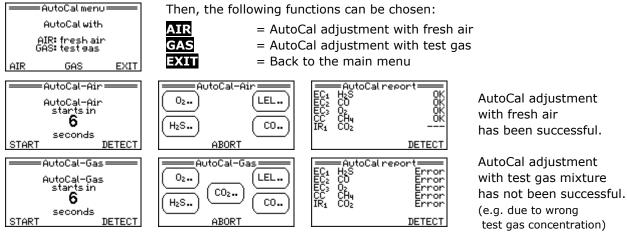
The individual menu items in the main menu are:

2.3.1.1 Place – Choice of a measuring point

From a table stored in the device, it is possible to select one of 100 possible places. All table entries can only be edited with a PC. In a table entry it is possible to save up to 15 letters / figures, which are saved as "**Job site**" in the G888.

By pressing the left and centre button a stored place will be selected. The choice is automatically completed, when the selected value is confirmed with the right "Back" button.

2.3.1.2 Name – Choice of a device user

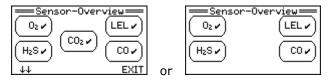

From a table stored in the device, it is possible to select one of 20 possible entries. All table entries can only be edited with a PC. In table entries it is possible to save up to 15 letters / figures, which are saved as "**Identification**" in the G888.

By pressing the left and centre button a stored user will be selected. The choice is automatically completed, when the selected value is confirmed with the right "Back" button.

2.3.1.3 AutoCal – Menu for AutoCal adjustment

In the menu item AutoCal several sensors can be simultaneously adjusted with fresh air (AIR) or test gas (GAS). Except from the CO_2 sensor, all sensors can be adjusted with fresh air without any further settings. When adjusting with test gas (GAS) the sensors need to be released depending on the used test gas / mixture. (Also refer to the paragraphs "AutoCal air . . ." and "AutoCal gas . . .")

The menu item AutoCal can be selected in the main menu or alternatively by simultaneously pushing the button in the middle and on the right one.



An AutoCal adjustment with fresh air is only performed if the sensor reading of the set point 0.0 (except for O_2) does not deviate more than $\pm 10\%$ from the measuring range or if the set point 20.9Vol.% O_2 does not deviate more than ± 5.2 Vol.% O_2 . An AutoCal adjustment with test gas is only performed if the sensor reading of the "Cal.Gas" set point (in the sensor menu "Calibrate") does not deviate more than 25%. In case of larger deviations, the corresponding sensor will then be marked with "Error" in the subsequently indicated

AutoCal report. In this case, adjust the sensor in the sensor menu "Zero" or "Calibrate" or with the docking station.

The adjustment can be performed in the diffusion mode with fresh air exempt from measuring gas. However, no ambient air should be used for the zero point adjustment of the CO₂ sensor, since the ambient air always contains a small portion of carbon dioxide (CO_2) which would then result in wrong CO_2 measured values. For this reason, the zero point of the CO₂ sensor should only be adjusted in the sensor menu "Zero" or with the docking station with CO_2 -exempted zero gas. It could be e.g. synthetic air, $100Vol\%N_2$ or specially purified air (CO_2 -free). Zero gas (air exempted from measurement gas) and test gas can be supplied via the calibration cap "SMART CAP" with a volume flow from 0.5...0.6slpm (I/min).

2.3.1.4 Sensor overview

The sensors which are represented in the overview are located in the corresponding plug-in locations of the device.

adjustments can be displayed in the sensor menu "Calibration data". The status display indicates if they have been successful ($\sqrt{}$) not

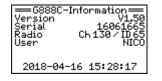
The data of the last three sensitivity

Display of the alarm settings as well as date and status of the last calibration

Alarms Alarm1 Alarm2 15'STEL 8h TWA).0 ppm H	128	Calibra 2018-0 2018-0	01-15	H2S==== status Z
ΨŤ	$\langle \rangle \rangle$	EXIT	44	$\langle \rangle \rangle$	EXIT

Sensor information

_	=CHy(CC)-Info====
ID: SN: NR:	MK221-01 00000 100.0%LEL SE: 92%
TR: OT:	-2565°C ??? EXIT


In this menu item, specific information for each individual sensor are displayed:

faulty (×).

- ID = Number of the measuring chamber
- SN = Serial number

- MR = Measuring range
- SE = Gas sensitivity of the sensor (100% = nominal)
- TR = Temperature range
- OT = Operating time of the sensor, e.g. 125 of 791 days

2.3.1.5 System information

In the system menu item **Information** you will find information about the device type, the firmware version, the serial number of the device.

2.3.2 Service menu

Access the service menu by selecting the main menu item Service. In the service menu it is possible to set the G888 by modifying the program parameters.

The menu items can only be accessed via an access code "0011". The access code prevents that important functions might be accidentally modified or modified by unauthorised persons. An alarming cannot be performed in the service mode.

= Go to the next letter in the alphabet

= Confirm letters (The cursor automatically skips to the next position). By long pressing the key, the last entry will be deleted, the cursor will skip one position back. = Go to the previous letter in the alphabet

After having entered the code 0011, the following will be displayed:

Service menu		
rs 199er	on	
SELECT	DETECT	
	n rs Jøger	n rs beger on

In the menu item **System** it is possible to perform general settings (refer to the section "System menu"). In the menu item Sensors it is possible o set sensor-specific functions (zero point and sensitivity adjustment). It is possible to retrieve information or to set alarm thresholds. By pressing the button **DETECT** you would exit the service menu and go back to the measuring mode.

2.3.2.1 System menu for system settings

2.3.2.1.1 Bump test

The functional test (inspection of the sensor values and alarms) can be easily and rapidly performed with the docking station DS400. The functional test is performed automatically, the intervals for the functional test will be stored in the G888. The functional test interval will be activated in the docking station after the first functional test.

Bump test					
last next	15.01	status .2018 ≠ 			
Interval		· days			
44	ተተ	EXIT			
B	ump test	status			
last next	15.01 17.01	.2018 - 2018 -			
Interval	1	days			
$\downarrow\downarrow$	ተተ	EXIT			
В	ump test	status			
last next	$15.01 \\ 23.01$.2018 - 2018 -			
Interval	7	' days			

Interval of the functional test is not activated.

Interval of the functional test is activated; the next functional test is immediately due.

Functional test on January 15th, 2018 was correct Next functional test will be due 7 days later.

2.3.2.1.2 Sensor adjustment (zero point and calibration)

The sensor adjustment (zero point and calibration) can be easily and rapidly performed fully automatic with the docking station DS400. The intervals for the sensor adjustment will be saved in the G888 and activated from the docking station after the first sensor adjustment.

last next	alibratio 19.03. 	on= status 2018 ≠
Interval		days
44	ተተ	EXIT
-Rec-	alibratio	
last next	19.03. 19.04.	status 2018 / 2018 -
Interval	28	days

Sensor adjustment on March 19th, 2018 was correct. The interval of the functional test is not activated.

Sensor adjustment on March 19th, 2018 was correct. The next sensor adjustment will be due 28 days later.

2.3.2.1.3 Maintenance

It is possible to enter a date in order not to forget the date for the next maintenance; the G888 will automatically trigger an alarm if this date is exceeded. After having exceeded the date, the G888 will inform the user that an maintenance needs to be performed as soon as the device is switched on. To do so, it is necessary to select first **Maintenance** in the service menu.

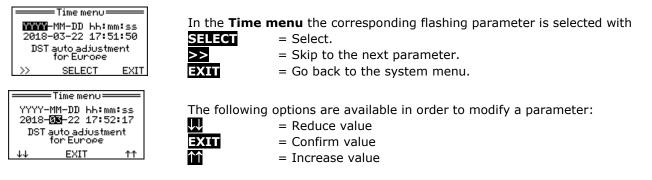
It is possible to first select which parameter needs to be changed (year, month and day):

= Back to the system menu

= Selecting the parameter to be flashing

= Change over to the next parameter

	Maintenance	
	Next date:	
	YYYY-MM-DD 2018- ∑⊒ -14	
$^{\downarrow\downarrow}$	EXIT	† †


The following options are available in order to modify a parameter: Reduce value

= Confirm value

= Increase value

2.3.2.1.4 Time

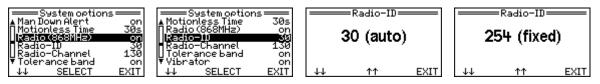
The device has a clock for date and time. The clock is buffered by a lithium cell, which is designed for a useful life of 20 years.

2.3.2.1.5 System options

If "System options" is selected in the service menu, the following will be displayed:

System options ==== Language Contrast 12	- Language	(Device language can be set e.g. German, English)
Volume 103dB(A) Man Down Alert off	- Contrast	(Display contrast can be set individually)
∐Radio(868MHz) off ▼Toleranceband on	- Volume	(Horn with 103dB(A), 90dB(A), 0dB(A))
↓↓ SELECT EXIT	- Man-Down-Alarm	(see below)
System options	- Radio	(see below)
▲Volume 103dB(A) ∏Man Down Alert off	- Tolerance band	(see below)
Radio (868MHz) off	- Vibrator	(on / off)
Vibrator on Startup+AutoCal off	 Start-up + AutoCal 	(on / off)
↓↓ SELECT EXIT	-	

Man-Down-Alarm


In the menu item "Man-Down-Alarm", it is possible to switch the motion detection on and off.

System o	etions —	System opt	
▲ Contrast	12	▲ Volume	103dB(A)
<u>∏Volume</u>	103dB(A)	<u>∏ Man Down Alert</u>	on
Man Down Aler	·	Motionless Time	
Motionless Ti		Radio (868MHz)	on on
Radio (868MH	lz) on 30	∐Radio-ID	30
▼Radio-ID	30	¥ Radio-Channel	130
JJ SELE	CT EXIT	JJ SELECT	EXIT

The "Motionless time" can be set from 20...300s. After the expiration of this time, the device user will be warned for 30 seconds. Only afterwards, the "Man-Down-Alarm" will be triggered in the measuring mode.

Radio-Adjustment

If a radio module is integrated in the G888, it is possible to switch the radio function on and off in the menu item "**Radio**". Depending on the radio module which is built in the G888, it will be displayed as (868MHz) or as (915MHz). If the radio module is switched on, it is possible to individually set the radio address and the radio channel. By default, the last two figures of the serial number of the device are being used. This corresponds to the setting (auto). Alternatively, the radio address can also be set from 0...254 (fixed). On the 868MHz radio module, the radio channel, which is by default set to 130, can also be set in the range from 101...111 or from 129...132. On the 915MHz radio module, no radio channel is being set, since this radio module is working with frequency hopping.

Switch tolerance band on/off

In the measuring mode, the G888 suppresses little fluctuations of the measuring value on sensors for toxic and flammable gases in the range of the zero point. In case of the oxygen measurement, low fluctuations about 20.9Vol% O_2 (fresh air range) will be suppressed. In order to avoid skips, the display value will be adjusted to the double value of the tolerance band up to the real measured value. Please find detailed information about the size of the tolerance band in the section "Sensor types and measuring ranges".

This tolerance band is activated by the manufacturer, but here under the system options it can generally be switched off as well. It is alternatively possible to enter the shortcut <REAL> for the deactivation or the shortcut <BAND> for the activation instead of the access code.

Sensor choice – activation / deactivation of sensors 2.3.2.1.6

Each sensor can be individually switched on or off for the measurement. This function will always be used if a gas shall not be measured or if a sensor is taken out of the device without replacing it.

	Sensor sele	ct ====
ECo		OFF
EC1	(H ₂ S)	ON
IIEC ₂	(CO)	ON
IIEC ₃	(02)	ON
LICC.	(CHy)	ON
₹ IR1	(CO ₂)	ON
$\downarrow\downarrow$	0n∕0ff	EXIT

ΟN

ŎŅ

On = Sensor active

Off = Sensor inactive

If no (gas) is indicated behind the sensor, the sensor is not available or it is not being identified.

= Scroll downward to the next sensor

= Activate / deactivate the corresponding sensor

= Back to the service menu

AutoCal air - Sensor release for AutoCal adjustment 2.3.2.1.7

Here it is possible to set which sensors should be used for the automatic adjustment with fresh air.

Except for the IR sensor for CO₂ by default all sensors are set to "ON" and are this released for the automatic fresh air adjustment.

- = Scroll downward to the next sensor
- On/Off
- = Adjustment / Non-adjustment of the sensor in the AutoCal program = Back to the service menu

EXIT

2.3.2.1.8 AutoCal gas sensor release for AutoCal adjustment

AutoCal-Gas EC1 (H₂S) ON EC2 (CO) ON EC3 (O2) ON EC3 (CH2) ON V IR1 (CO2) ON	adjustment with test gas. By default, all sensors are set to "OFF". If several sensors need to be adjusted simultaneously with a test gas mixture, these sensors can be selected here.
↓↓ On/Off EXIT	= Scroll downward to the next sensor

- = Scroll downward to the next sensor
- = Adjustment / Non-adjustment of the sensor in the AutoCal program

EXIT

- = Back to the service menu
- 2.3.2.2 Sensor menu for sensor settings

The following functions refer to the individual sensors in the G888. In the sensor menu, each sensor can be selected individually. Then, the settings apply for each selected sensor.

For the description of the functions of the sensor-specific settings the CH_4 sensor resp. the O₂ sensor are mentioned as an example. However, the setting options apply for all sensors in the same way.

EC2 EC2 EC3	=Sensormenu 199.9 99m H 500 ppm C 25.0 Vol% 0 100.0 %LEL C	
∐ ĬŘ₁	100.0 ×LEL Č 5.00 Vol.× Ci	Ď2
11	SELECT	EXIT

	$=H_2S(EC_1)=$	
Zero		
	rate	
Alarm		
	ration dates Mation	
	irerange	
neaso		EVIT
++	SELECT	EXIT

Input	opti	ions
$\downarrow\downarrow$		

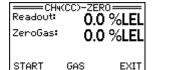
= Selecting the sensor

= Changing over to the next sensor

= Back to the service menu

The following settings are available for each sensor:

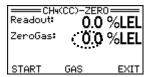
5	5
Zero	= Adjusting the zero point
Calibrate	 Adjusting the sensitivity
Alarms	 Setting the alarm thresholds
Calibration data	a = Data and status of the last calibration and zeroing)
Information	 Sensor information: MK number, serial number,
	measuring range, temperature range)
Unit and	= Selecting the CH_4 unit to be displayed (%LEL / Vol%)
Type of gas	or selection of the type of gas to be displayed


= Changing over to the next menu item

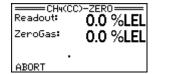
= Selecting the menu item

= Back to the service menu

2.3.2.2.1 Zero - Adjusting the zero point


When adjusting the zero point, the sensors should be gassed with air exempt from measuring gas or the carbon dioxide and the oxygen sensor (*1) with 100Vol% nitrogen. In this case, the zero gas can be supplied via the "SMART CAP" calibration cap with a flow from 0.5...0.6slpm (l/min). In order to adjust the zero point, it is necessary to select the sensor menu item "Zero". Then, the following will be displayed:

- = Starting the zero point adjustment
- = Inputting the zero gas concentration
- = Back to the "CH₄menu"


Generally, the zero gas is 0.0 so that it is not necessary to modify this concentration. However, in special cases, the zero gas concentration can be slightly raised after having pressed the button GAS. After having input **GAS** the following screen will be displayed:

- = Reducing the zero gas concentration by one unit
- = Confirming the value and back to the menu item "Zero"
- = Increasing the zero gas concentration by one unit

By inputting **Start** the zero point adjustment is being started:

= Cancelling the adjustment and changing over to the "CH₄" menu.

If a constant measured value is registered after a stabilisation time of 100 seconds, the adjustment will be performed and conformed by pressing the button "OK". For CC, IR and O_2 sensors the stabilisation time is a bit longer but generally limited to 3 minutes.

For (*1): The zero point adjustment of the oxygen sensor will be performed with 100Vol% nitrogen at the factory. For the monitoring of the usual alarm thresholds of \geq 17Vol.%O₂ no readjustment of the user would be needed. In this case, it is sufficient to adjust the sensitivity.

2.3.2.2.2 Calibrating - Sensitivity adjustment

The gas sensitivity of the sensor is adjusted for the calibration. Before performing the sensitivity adjustment, a zero point adjustment needs to be performed. A corresponding test gas is required for the sensitivity adjustment. Test gases are e.g.:

Measuring range	Test gas
тх	Carbon monoxide (CO), hydrogen sulphide (H_2S) or other gases
ох	Fresh air or test gas with 20.9 Vol% oxygen (O_2) in nitrogen (N_2)
EX	Methane (CH ₄), propane (C ₃ H ₈) or any other flammable gases (*2)

The test gases to be used can be learned from the test log. For the sensitivity adjustment, the concentration of the test gas should amount to from 30% to 70% of the measuring range end value. However, for IR sensors with measuring ranges of >5Vol.CO₂ the concentration of the test gas has to amount to from 25% to 75% of the measuring range end value. The test gas can be supplied via the "SMART CAP" calibration cap with a flow from 0.5...0.6slpm (l/min).

In order to adjust the sensitivity, it is necessary to select the sensor menu item "Calibrate".

Vol%	S
Vol%	G
EXIT	

:02(EC3)

20.9

20.9

GAS

Readout:

Cal.-Gas:

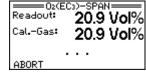
START

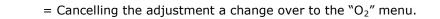
ART = 9 S = 1

Starting the sensitivity adjustmentInputting the test gas concentration

= Back to the " O_2 " menu

By inputting the GAS the test gas concentration can be set in the range from 10 to 105% of the measuring range end value:

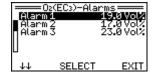



EXIT

ABORT

- = Reducing the test gas value by one unit
- = Increasing the test gas value by one unit
- = Confirming the value and back to the " O_2 " menu

However, by inputting **Start** the sensitivity adjustment is being started:


If a constant measured value is registered after a stabilisation time of 25 seconds, the adjustment will be performed and conformed by pressing the button "OK". Generally, the stabilisation time is limited to 3 minutes.

For (*2): The sensitivity adjustment of sensors which measure certain flammable gases in the %LEL range, such as hexane, nonane or similar "heavy" vapours, is not unproblematic. Apart from the availability of such a test gas, it has to be assumed with a long stabilisation time in the range of several minutes for the gas supply. Alternatively, the sensitivity adjustment can be performed with a suitable reference gas (e.g. propane). The IR sensor MK249-8 can be adjusted e.g. with a reference gas of 0.85Vol%C₃H₈ (propane) to 67%LEL hexane or 80%LEL nonane. The cross-sensitiveness for such sensors are indicated in the section "Sensor specifications".

2.3.2.2.3 Alarms - Alarm setting

The G888 has 3 momentary value alarms for the non-toxic gases (O2, CH4) each, for the toxic gases (e.g. H_2S , CO, CO₂) there are 2 momentary value alarms each. The alarms are triggered if the gas concentration exceeds or falls below the corresponding limit value. An alarm can additionally be emitted for the toxic gases if the long-term and the short-term value (TWA and STEL) are being exceeded.

After having selected the sensor menu item **Alarms** the following screen is displayed (here: Selecting O_2):

- = Scroll downward
- = Selecting the menu item
- = Back to the sensor menu

After having selected the alarm limit value (in the example: Alarm 1) it is possible to enter the value:

=02(EC3)-Alarm1= 19.0 Vol% EXIT $\uparrow\uparrow$

The selected alarm limit value flashes and can only be changed, if: $\uparrow\uparrow$

= Reducing the alarm value by one unit

= Back to the sensor menu

= Increasing the alarm value by one unit

With the exception of %LEL measuring ranges all limit values can be freely set or completely deactivated (0 or "---") over the whole measuring range. For %LEL measuring ranges, the limit values can be set to up to maximum 60%LEL.

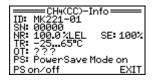
2.3.2.2.4 Calibration data

o ibrate ibration dates prmation prmation source ange	===0₂(EC₂)-CalDates === Zeroing status <no entry=""></no>		In la: It
SELECT EXIT	CAL EXIT	ZERO EXIT	

n this menu item, the data of the ast calibration will be displayed. is a pure information display.

2.3.2.2.5 Information

CH4(CC)	
Zero	
🛛 Çalibrate	
Alarms	
Calibration dates	
Measurerange	
JJ SELECT	EVIT
↓↓ SELEUI	EXIT


The individual data of the sensors which are built-in the device, are displayed here.

The MK number corresponds to the sensor type ID:

SN: Serial number of the sensor

MR: Measuring range of the sensor

- SE: Gas sensitivity of the sensor (nominal=100%)
- TR: Temperature range in which the sensor can be used

Operating time the sensor has already been used OT:

PS: The PowerSave mode from the Catalytic Sensor can be turned on or off with the left button. This mode cannot be activated if the sensitivity of the sensor is too low and on "heavier" gases (such as hexane, nonane or similar) due to the smaller sensor signal.

2.3.2.2.6 Measuring range

Under the menu item Measure range, different pre-defined measuring ranges are listed for smart GfG sensors. They can be selected.

100.0%LEL CH4 🗾 🖌
100.0 / LEL H2
100.0 XLEL C3H8
100.0 XEEL C4H10
100.0 ×LEL CsH12
¥ 100.0 %LEL nHexane
↓↓ SELECT EXIT

In this menu item (here WT sensor) it is possible to select the type of gas to be displayed or to set the CH_4 unit to %LEL or Vol.%. The volume concentration in brackets corresponds to the final value of the measuring range. Hereby it is possible to set the measuring range to the countryspecific LEL value.

If the unit or the type of gas has been changed, the device needs to be restarted after quitting the service program, before performing a functional test or an AutoCal adjustment with a docking station.

2.3.2.3 Data logger settings

In the menu item **Data logger** it is possible to make different settings:

- **Complete** Deleting the data from the data logger (display of the memory usage)
- Mode - Selection of momentary values, mean values or peak values
- Interval - Interval of the data logging (selectable from 1 second to 60 minutes)

Full Interv Mode Overw		er
44	ERASE	EXIT

The parameter COMPLETE indicates how much capacity of the data logger has been completed.

↓.	Ļ			
-	D	ΛC	1	

EXIT

- = Scrolling downward to the next parameter
- = Deleting the data. A security query will follow "Delete data?". Confirm by pressing the button YES (right button), cancel by pressing the button **NO** (left button)

Full Inter Dveru	Ĥ	11% 0:01:00 Verase on
ΨΨ	CHANGE	EXIT
Full Mode Overs	=Datalogger Val A Write	11% SHSIHSS Verage on

CHANGE

_____Datalogger _____

= Back to the main menu

If the parameter **Mode** is selected by pressing the button **CHANGE**, it would be possible to choose between the momentary value, mean value and peak value (Peak). After having input **EXIT** the system will skip back to the logger menu. The selected mode will be taken over.

Interval: The interval of the data logging can be selected by pressing the buttons on the left and right from 1 second to 60 minutes.

The data of the data logger can be read with the help of the charging tray or of the charging cap and an optional USB adapter cable and be transferred to a PC.

The device must not be charged in potentially explosive atmospheres. The charging contacts must not get dirty.

Caution:

2.4.1 Charging the device battery

Energy supply

2.4

(Refer to the paragraph "Maintenance" in the annex)

lithium polymer or lithium ion batteries, is excluded for the battery of the G888.

The battery of the G888 can be charged in the charging tray. Perfect functioning is only guaranteed if the charging tray is lying or is fixed horizontally and the mounting bracket is correctly clammed in. Caution: Do not mount vertically!

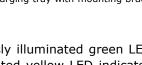
The charging tray will be supplied by a plug-in power supply made by the company GfG or alternatively via a vehicle charging cable made by the Charging tray with mounting bracket company GfG. The charging tray limits the charging voltage for the G888 to max. 6V.

The charging process is subdivided in normal and trickle charging. The continuously illuminated green LED indicates the operational readiness of the charging tray. The continuously illuminated yellow LED indicates the normal charging process and the flashing yellow LED indicates the trickle charging. If the yellow and the red LED are flashing alternately, the battery will first be discharged and then the charging process will be automatically started. If only the red LED is flashing, the charging tray is defective.

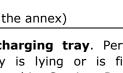
The G888 is equipped with a NiMH supply module as a device battery. In this supply module, the battery is an integral part of the back panel of the housing. A dangerous growth of dendrites, as it may happen e.g. in

Make sure that the charging process will be indicated by the yellow LED and on the display after having inserted the G888 into the charging tray and closing the mounting bracket. Otherwise, there might possibly be contact problems. In case of a completely discharged battery, the charging process will take about 6 to 7 hours. Then, the charging tray will automatically switch over to the trickle charging so that an overloading of the battery will be excluded. Both states of charge will be displayed on the screen of the G888. After having switched over to the trickle charge, the battery will have at least 95% of its capacity. In order to attain a capacity of 100%, the battery module needs to be charged another 2 hours with trickle charging.

With the help of the charging tray and an optional USB adapter cable, the data of the G888 data logger can be read and transferred to a PC.


Alternatively, it is possible to charge the battery of the G888 with the help of the "SMART CAP". The SMART CAP needs to be fixed to the G888 with the clip connection on the side.

The SMART CAP will be supplied by a plug-in power supply of the GfG. The SMART CAP limits the charging voltage for the G888 to max. 6V. It applies the same for the charging process and the signalling of the green and yellow LED, as described above for the use of the charging tray. At the start of loading, make sure that the loading process is indicated by the yellow LED and on the display (otherwise there might possibly be contact problems).


With the help of the SMART CAP and a USB cable, the data of the G888 data logger can be read and transferred to a PC.

In addition, the SMART CAP also allows calibrating the device. However, this cannot be performed during the charging process.

In order to permanently maintain the capacity of the NiMH battery, make sure that the battery can only be charged by using the charger depending on the useful life and frequency and the charger is not used as a storage place for weeks for the gas measurement device. Please find recommendations in the following table for the charging depending on the device usage.

	Device usage	Recommendation for the charging of the battery
1.	Daily for more than 3h	Charge after use
2.	Daily for less than 3h	Charge every 2nd or 3rd day
3.	Once per week	Charge 1 day before the next use
4.	Once per month for more than 3h	Charge after use as well as 1 day before the next use
5.	Once per month for less than 3h	Charge 1 day before the next use
6.	Once per calendar quarter or rarer	Charge after use as well as 1 day before the next use

For 4,5,6: If the device is rarely used, then the battery needs to be charged after use, since one part of the sensor electronics also needs to be supplied with energy even when the device is switched off. If the device has not been used for a very long period of time and the battery is completely discharged, then the device needs to be recharged about 1 day before the next use. A normally discharged battery will generally be charged to 95% of its normal capacity within about 6 hours charging mode. After another 2h trickle charging mode, the battery will be charged to 100% of its normal capacity. If in spite of the completely charged battery effect" (effect of the inertia of the battery). At this, the discharge behaviour changes in such a way that in spite of the completely charged battery the battery and the device can nevertheless be operated for a long time.

2.4.2 Removal of the lazy battery effect on a device battery

On the NiMH supply units, the so-called "lazy battery effect" and thus a reduction of the service life of the device might occur after longer non-use, due to wrong charging behaviour, due to unfavourable device use or due to temperature conditions above 50°C. This may occur if the battery of the device has never been completely discharged or if the battery is charged too often or too long. It has to be avoided to start the charging process several times per day and that the device is permanently deposited in the charger for several days or weeks. The "lazy battery effect" can often be remedied by completely discharging the NiMH battery. However, in order that the battery would not be completely discharged, the device must not be manually switched off.

2.4.3 Replacing the device battery (NiMH supply unit)

Caution: The device must not be opened in potentially explosive areas and therefore the NiMH supply unit (battery) must not be changed. Since the battery is an integral part of the back panel of the housing, it is only allowed to replace it outside the potentially explosive area by a NiMH supply unit of the **same type**.

The device needs to be switched off, before replacing the NiMH supply unit. In order to remove the back panel of the housing, the four screws at the back need to be unscrewed and the whole NiMH supply unit needs to be pulled off to the rear.

3 Annex

3.1 Maintenance

Soiling of the device housing can be removed using a cloth dampened with water. Do not use solvents or cleaning agents! Particularly make sure that the outer charging contact surfaces of the G888 and the charging contact pins of the charging adapters are clean. In case of bad/incorrect contacting of the charging adapter, the NiMH battery will only be charged incompletely or not at all.

3.2 Maintenance and inspection

The maintenance and inspection includes a regular review and adjustment of the sensitivity and of the zero point. Moreover, the functioning of the device needs to be checked. Gas warning devices can behave in different ways depending on the environmental conditions. Thus, it is important to perform a test and an adjustment, if applicable, independent from the maintenance works (refer to the DIN EN 60079-29-2 paragraph 9.2 as well as the DGUV Information 213-057 (T 023) and DGUV Information 213-056 (T 021) of the BG RCI in Germany). This test includes the following inspections:

- Visual inspection regarding mechanical damages
- Visual inspection of the gas entry
- State of charge of the battery
- Display with zero gas and with test gas as well as alarm triggering

The response behaviour of oxygen sensors can be checked with a suitable test gas (<18Vol.% O_2) and with the help of the docking station, the "SMART CAP" calibration cap. In the simplest case, the response behaviour can also be checked with slowly exhaled air.

3.3 Maintenance - Repair

The DIN EN 60079-29-2 "... gas measurement devices – selection, installation, use and maintenance of devices for the measurement of flammable gases and oxygen", the DIN EN 45544-4 "... Electrical devices for the direct detection and direct concentration measurement of toxic gases and vapours, Part 4: Guideline for the selection, installation, use and maintenance" as well as the corresponding national sets of rules need to be considered.

In the sense of the "Explosion Protection Directive", the "BGR 500, Section 2.33" (formerly: Accident prevention regulations (UVV) gases), the maintenance includes the maintenance, inspection and repair of gas warning units. The applicable measures are described in the DGUV Information 213-057 (T 021) and 213-056 (T 023) the BG RCI. The functional test has to be performed before the first use and at least every 4 months and includes:

- Position of the zero point
- State of charge of the battery
- Diffusion paths
- Display with zero gas and standard test gas, if applicable, adjustment
- Alarm signal triggering, e.g. with alarm test gas
- Constantly amplified signal with standard test gas
- Response time

The test has to be performed by an expert and a written confirmation about the result has to be available. Generally, the restoration of the G888 has to be performed according to the instructions of the manufacturer by using original spare parts for the maintenance.

3.4 Calibration device

The device has to be supplied with test gas in order to control the sensitivity of the display. The diffusion openings can be covered with the help of the "SMART CAP" so that the test gas can be supplied to the sensors with a flow from 0.5...0.6slpm (I/min). Alternatively, for certain test gases, this inspection can also be performed with the docking station DS400.

Caution: Test gases, in particular toxic gases may pose hazards. Make sure that test gases are not inhaled. Working places, where devices are calibrated with test gas, need to be sufficiently ventilated depending on the type of gas, concentration and gas quantity. In particular cases, a gas extraction or a gas discharge is suitable. The safety notes on the test gas bottles as well as the safety data sheets of the test gases need to be observed in any case.

3.5 Inspection with the docking station DS400

The functional test required in the DGUV Information 213-057 (T 023) and 213-056 (T 021), as well as the adjustment of the G888 can be easily and rapidly performed with the docking station.

The functional test will be automatically started and performed fully automated. The effective time for a functional test amounts to about 20 seconds. The adjustment (sensor adjustment) will be started at an individual push of a button and completed within a few minutes. A green or red LED will indicate the test result. The detailed values are displayed on the device screen (functional test report, AutoCal air report, AutoCal gas report). No PC is required to perform the functional tests and the adjustment, all relevant data will be automatically saved on an SD card which is inserted in the docking station.

The first time, the functional test of the G888 needs to be performed, the interval for the functional test and the adjustment can be automatically activated on the docking station.

Before using the docking station, it is necessary to read and follow its operating instructions.

	for Handhellon, eduse, remedy					
	Malfunction / Message	Cause	Remedy			
1.	Simultaneously flashing alarm	Insufficient voltage supply	Charge battery			
	LEDs and display off	Hardware or program execution error	Call the GfG service			
2.	Permanent "Boot loader" with	Program memory defective	Transfer Firmware to the device			
	red display lighting		Call GfG service, if necessary			
3.	"ERROR! RAM"	Working memory defective	Switch device off and on			
4.	"ERROR! EEP"	Device parameter memory defective	Call GfG service, if necessary			
5.	"ERROR! BAT"	Battery voltage metering defective	_			
6.	"ERROR! ALG"	Program execution error / Algorithm				
7.	"Clock clip does not work!"	Hardware defect	Acknowledge message			
	"Time reset to"		Call GfG service, if necessary			
8.	"Reset time to"	Clock not set or buffer battery is empty	Acknowledge message, set time			
			Call GfG service, if necessary			
9.	"Sensor defective!"	Sensor defective or not available	Switch device off and on			
			Call GfG service, if necessary			
10.	"Data incorrect!"	Sensor data are incorrect	Switch device off and on			
			Call GfG service, if necessary			
11.	"Reconnect sensor to EC1!"	EC sensor is connected to the wrong slot	Open device, reconnect sensor, then			
12.	"Reconnect sensor to		switch the device on again			
10	EC2 or EC3!"					
13.	"Sensor not available.	Sensor not available.	Acknowledge message and switch off			
	Deactivate sensor		sensor in the service program			
14.	in the system menu!" "CHECK ALARMS"	Concer was realized by spether type	Call GfG service, if necessary Check alarm setting in the service			
14.		Sensor was replaced by another type	program and change it, if necessary			
15.	"Gas type is not supported"	Gas type is not supported by the device	Remove sensor			
15.	Gas type is not supported	or old Firmware version	perform Firmware update, if necessary			
16.	"No sensors"	No sensors activated in the service program	Activate available sensors in the			
10.	10 3013013	The service program	service program			
17.	Gas display "START" ("STRT")	Sensor is still in the activation phase	Wait for some seconds			
18.	Gas display "????"	Measuring with WT sensor is not possible,	If this occurs with fresh air, it is			
10.		since oxygen display <10Vol%	necessary to adjust or replace the			
			oxygen sensor			
19.	Gas display "" / Error	No gas display, since the sensor is defective	Deactivate the sensor in the service			
		or	program			
		the sensor data are incorrect	Call GfG service, if necessary			
20.	Gas display "	Measured value underrange	Perform zero point adjustment			
		Clearly falling below the measuring range				

3.6 Malfunction, cause, remedy

24			
21.	Gas display "	Measured value over range/excess	Leave the range of high gas
		available gas concentration is too high	concentration and
		or high cross sensitivity (for EC sensor)	acknowledge message for the WT
		or protective circuit activated (for WT	sensor and confirm in the fresh air
		sensor)	range
22.	Gas display "FAULT" ("FLT")	IR sensor signal is incorrect	If this happens repeatedly
			Call GfG service
23.	Gas display "TEMP" or	Sensor is operated outside the specified	Go to a normal environmental
	"TEMP ERROR"	temperature range	temperature range
		or hardware defect at 0°C <ta<30°c< td=""><td>Call GfG service, if necessary</td></ta<30°c<>	Call GfG service, if necessary
24.	Gas display "POWER" or	Energy supply of the sensor is disturbed	If this happens repeatedly
	"POWER ERROR"		Call GfG service
25.	Gas display "P+T"	See gas display "TEMP" and "POWER"	See above
26.	"Gas concentration is too	When changing from the	Wait until the gas concentration has
	high!"	HI% range to the %LEL range	reduced to less than 5Vol% and repeat
	-	the gas concentration is still above 5Vol%	switchover.
27.	"No sensors released for	No sensors released for the automatic fresh	Release for the automatic adjustment
	AutoCal	air or test gas adjustment	in the service program Sensor(s)
	air (gas)"		
28.	"Zeroing failed	Possibly measuring gas available or	Perform zero point adjustment in the
	measured value too high"	too positive (negative) zero point deviation	environment exempt from measuring
	(too low)		gas
			Call GfG service, if necessary
29.	"Calibration failed	Wrong test gas concentration or	Check test gas and set point
	Measured value too low" (too	sensor sensitivity too low (too high)	Call GfG service, if necessary
	high)		
30.	"Zeroing (calibration) failed	Extreme sensor signal deviation or	Repeat process and
	Signal cannot be detected"	hardware defect	call GfG service, if necessary
31.	"Saving failed"	Parameters cannot be saved when quitting	Switch device off and on, then repeat
	-	the service program	the settings in the service program
			Call GfG service, if necessary
	•	•	· · · ·

3.7 Accessories and spare parts

	Description	Order No
1.	G888/G999 SMART CAP (calibration cap)	1990210
2.	G888/G999 SMART CAP with USB cable (calibration cap and data transfer)	1990211
3.	G888/G999 SMART CAP with USB cable and EU plug-in power supply (5.0VDC/1.0A)	1990212
4.	DIC888/999-B Charging tray with brackets and EU plug-in power supply (12VDC/700mA)	1990221
5.	DIC888/999-B Charging tray with brackets and vehicle charging cable	1990222
6.	DIC888/999 USB interface cable	1990229
7.	DS400 Docking station for G888/G999-D with EU plug-in power supply (12VDC/1300mA)	1990231
8.	DS404 Docking station for G888/G999-D with EU plug-in power supply (12VDC/1300mA)	1990236
9.	TS888/999 Test station without fitting without plug-in power supply	1990240
10.	TS888/999 Test station with fitting without plug-in power supply	1990241
11.	TS888/999-DIC Test station with charging function without fitting without plug-in power supply	1990245
12.	TS888/999-DIC Test station with charging function with fitting without plug-in power supply	1990246
13.	G888C NiMH supply unit A21	1990401
14.	G888 Spare sensors → refer to the section "Sensor types and measuring ranges"	

The spare parts and the accessories need to be stored at an environmental temperature from 0° to 30°C. The storage time must not exceed 5 years. For NiMH supply units a shorter storage time of one year applies. The battery must be charged before the storage. If the device might be stored for more than $\frac{1}{2}$ year, the battery should be removed.

3.8 Indications regarding the environmentally friendly disposal

According to section 11 of the General Terms and Conditions of the company GfG, the purchaser of the device agrees to dispose of the device or device components in an environmentally sound manner in line with sections 11 and 12 of the German Electrical and Electronic Equipment Act (ElektroG). If desired, GfG in Dortmund, Germany, can also carry out correct disposal.

3.9 Sensor types and measuring ranges

The spare sensors need to be stored at an environmental temperature from 0° to 30°C. The storage time must not exceed one year. For electrochemical sensors a shorter storage time of $\frac{1}{2}$ year applies. When storing oxygen sensors, the service life to be expected will be reduced. When storing the spare sensors, make sure that the environmental atmosphere is not aggressive and free from sensor toxins.

Slot	Sensor type	Display range	Measuring gas and additional information	Order No
EC1	MK380-8	0 500ppm 0 100ppm	CO Carbon monoxide and H_2S hydrogen sulphide	1990710
	MK390-8	0 10ppm (*1)	Cl ₂ Chlorine	1990725
	MK391-8	0 2ppm	ClO ₂ Chlorine dioxide	1990730
	MK349-8	0 2ppm	COCI2 Phosgene	1990800
	MK443-8	0 500ppm (*1)	CO Carbon monoxide	1990705
	MK445-8	0 100ppm (*1)	H ₂ S Hydrogen sulphide	1990700
	MK396-8	0 2000ppm	H ₂ Hydrogen	1990785
	MK402-8	0 1Vol.%	H ₂ Hydrogen	1990790
	MK403-8	0 4Vol.%	H ₂ Hydrogen	1990795
EC1	MK409-8	0 50ppm (*1)	HCN Hydrogen cyanide	1990760
EC2	MK412-3	0 10ppm	HF Hydrogen fluoride (EU version)	1990765
EC3	MK412-9	0 10ppm	HF Hydrogen fluoride (resolution 0.5ppm)	1990766
	MK453-8	0 300ppm (*1)	NH ₃ Ammonia	1990735
	MK454-8	0 1000ppm(*1)	NH ₃ Ammonia	1990740
	MK458-8	0 30ppm (*1)	NO ₂ Nitrogen dioxide	1990750
	MK383-8	0 25Vol.%	O_2 Oxygen (2 years)	1990715
	MK427-8	0 25Vol.%	O ₂ Oxygen (3 years)	1990716
	MK353-8	0 10ppm (*1)	PH ₃ Phosphine	1990770
	MK460-8	0 20ppm (*1)	SiH ₄ Silane	1990780
	MK440-8	0 10ppm (*1)	SO ₂ Sulphur dioxide	1990720
	MK379-8	0 20ppm (*1)	C_2H_4O Ethylene oxide	1990775
EC2	MK392-8	0 30ppm (*1)	HCl Hydrogen chloride	1990755
EC3	MK432-8	0 25Vol.%	O ₂ Oxygen (5 years)	1990717
	MK457-8	0 100ppm (*1)	NO Nitrogen monoxide	1990745
	MK221-0	0 100%LEL	Flammable gases and vapours (*2)	1990850
<u> </u>	MKZZI-U	0 5Vol.%	CH ₄ Methane	1990630
CC	MK221-1	0 100%LEL	Flammable gases (*2) (increased contamination resistance)	1990851
	MIKZZI-I	0 5Vol.%	CH ₄ Methane (increased contamination resistance)	1990631
		0 5Vol.%	CO ₂ Carbon dioxide	1000020
IR	MK245-1	0 100%LEL	Flammable gases and vapours (*2)	1990920
(Infrared)	MK248-8	0 5Vol.%	CO ₂ Carbon dioxide	1990900
-	MK249-8	0 100%LEL	Flammable gases and vapours (*2)	1990905

For (*1): The sensor can also be set to other measuring ranges (refer to the sensor specification) For (*2): CH_4 Methane or one of the below mentioned flammable gases and vapours

Sensor type	Flammable gases and vapours
МК221-0	CH ₄ (methane), C ₃ H ₈ (propane), C ₄ H ₁₀ (butane), C ₅ H ₁₂ (pentane), C ₆ H ₁₄ (n hexane), H ₂ (hydrogen), C ₂ H ₂ (acetylene), C ₂ H ₄ (ethylene), CH ₄ O(methanole), C ₂ H ₆ O(ethanole), C ₃ H ₈ O(isopropanole), C ₄ H ₁₀ O(n butanole), C ₃ H ₆ O(acetone), C ₃ H ₆ O ₂ (methylacetate), C ₄ H ₈ O ₂ (ethylacetate), C ₄ H ₈ O(methylethylketone MEK), C ₇ H ₈ (toluene), C ₆ H ₁₂ O(methylisobutylketone MIBK), C ₇ H ₁₆ (heptane), C ₉ H ₂₀ (n nonane)
MK221-1	CH_4 (methane), C_3H_8 (propane), C_4H_{10} (butane), C_5H_{12} (pentane), C_6H_{14} (n hexane), H_2 (hydrogen), C_2H_2 (acetylene), C_2H_4 (ethylene)
MK245-1 MK249-8	CH_4 (methane), C_3H_8 (propane), C_6H_{14} (n hexane), C_9H_{20} (n nonane), ETF (ethyl formate)

3.10 Sensor specification

MK221-0 Catalytic combustion Measuring ranges:	0.0100%LEL 0.005.00Vol.% CH4
Resolution / tolerance band:	0.5 / ±2.5%LEL 0.02 / ±0.14Vol.% CH4
Response time:	$t_{50} \le 10$ sec $t_{90} \le 20$ sec @ CH ₄ (methane)
Response time.	$t_{50} \le 12 \text{sec}$ $t_{90} \le 20 \text{sec}$ (include) $t_{50} \le 12 \text{sec}$ $t_{90} \le 30 \text{sec}$ (include)
	$t_{50} \le 25 \text{sec}$ $t_{90} \le 65 \text{sec}$ (a) C_6H_{14} (n hexane)
Pressure (70)80120(130)kPa:	max. $\pm 5(7)$ %LEL or $\pm 10\%$ of the display (regarding 100kPa)
Humidity 0%95% RH:	max. $\pm 3\%$ LEL or $\pm 10\%$ of the C ₃ H ₈ display (regarding 0% RH @40°C)
	or $\pm 30\%$ of the CH ₄ display (regarding 0% RH @40°C)
Temperature(-20)-10+40(55)°C:	max. $\pm 3\%$ LEL or $\pm 10(15)\%$ of the display (regarding 20°C)
Flow velocity 06m/s:	max. $\pm 1\%$ LEL or $\pm 15\%$ of the display @Flow velocities $\geq 1,5m/s$
Cross sensitivities @ 50% LEL:	Gas supply CH_4 display C_3H_8 display n-hexane display
-	2.00Vol.% H ₂ about 65%LEL about 100%LEL about 135%LEL(theor.)
	2.20Vol.% CH ₄ = <u>50%LEL</u> about 75%LEL about 100%LEL
	1.15Vol.% C ₂ H ₄ about 48%LEL about 58%LEL about 77%LEL
	0.85Vol.% C ₃ H ₈ about 33%LEL <u>= 50%LEL</u> about 65%LEL
	0.70Vol.% C ₄ H ₁₀ about 31%LEL about 47%LEL about 62%LEL
	0.55Vol.% C_5H_{12} about 28%LEL about 40%LEL about 52%LEL
	0.50Vol.% C_6H_{14} about 27%LEL about 38%LEL <u>= 50%LEL</u>
	0.45Vol.% C ₇ H ₁₆ about 19%LEL about 28%LEL about 35%LEL
	0.40Vol.% C_8H_{18} about 15%LEL about 23%LEL about 29%LEL They can vary from one sensor to another and depend on the gas concentration as well as on the age of
	the sensor.
Expected service life:	3 years in pure air
K221-1 Catalytic combustion s	ensor for flammable gases (with increased contamination resistance)
Measuring ranges:	0.0100%LEL 0.005.00Vol.% CH4
Resolution / tolerance band:	0.5 / ±2.5%LEL 0.02 / ±0.14Vol.% CH4
Response time:	$t_{50} \leq 10 \text{sec}$ $t_{90} \leq 20 \text{ sec}$ @ CH ₄ (methane)
	$t_{50} \le 12 \text{sec}$ $t_{90} \le 30 \text{ sec}$ (0, C_3H_8 (propane)
Durana (70)00 120(120)UD-	$t_{50} \le 40$ sec $t_{90} \le 105$ sec $(0.6H_{14} (n-hexane))$
Pressure (70)80120(130)kPa: Humidity 0%95% RH:	max. $\pm 5(7)$ %LEL or $\pm 10\%$ of the display (regarding 100kPa)
Humidity 0%95% RH:	$\begin{array}{ll} \mbox{max.} \pm 3\% \mbox{LEL or } \pm 10\% \mbox{ of the } C_3 \mbox{H}_8 \mbox{ display} & (regarding 0\% \mbox{ RH } @40^{\circ} \mbox{C}) \\ & or \pm 20\% \mbox{ of the } \mbox{CH}_4 \mbox{ display} & (regarding 0\% \mbox{ RH } @40^{\circ} \mbox{C}) \\ \end{array}$
Temperature(-20)-10+40(55)°C:	max. $\pm 3\%$ LEL or $\pm 10(15)\%$ of the display (regarding 20% C)
Flow velocity 06m/s:	max. $\pm 1\%$ LEL or $\pm 20\%$ of the display @Flow velocities ≥ 1.5 m/s
Cross sensitivities @ 50% LEL:	Gas supply CH_4 display C_3H_8 disply n-hexane display
	2.00Vol.% H ₂ about 65%LEL about 100%LEL about 135%LEL(theor.)
	2.20Vol.% CH ₄ $=$ 50%LEL about 75%LEL about 100%LEL
	1.15Vol.% C_2H_4 about 48%LEL about 58%LEL about 77%LEL
	0.85Vol.% C ₃ H ₈ about 33%LEL = 50%LEL about 65%LEL
	0.70Vol.% C ₄ H ₁₀ about 30%LEL about 47%LEL about 62%LEL
	0.55Vol.% C ₅ H ₁₂ about 26%LEL about 40%LEL about 52%LEL
	0.50Vol.% C ₆ H ₁₄ about 25%LEL about 38%LEL <u>= 50%LEL</u>
	They can vary from one sensor to another and depend on the gas concentration as well as on the age o the sensor.
Expected service life:	3 years in pure air
	ensors for carbon dioxide CO ₂
Measuring range:	0.025.00Vol.% or 0.0025Vol.%
Resolution:	0.010.05Vol.% or 0.010.5Vol.%
Response time:	$t_{50} \le 20sec$ $t_{90} \le 50sec$ $t_{10} \le 50sec$ @ CO_2
Pressure 70130kPa:	<1.6% of the display per 1% pressure change (regarding 100kPa)
Humidity 0%95% RH:	max. ±0.01 Vol.% or ±2% of the display (regarding 50%RH @20°C)
T 1 20 FE00	max. ±0.02 Vol.% or ±10% of the display (regarding 20°C)
Temperature -20+55°C:	
Temperature-20+55°C:Long term stabilityper month:Expected service life:	max. ± 0.01 Vol.% or $\pm 2\%$ of the display (under laboratory conditions 6 years

"INZ49"0/ MKZ4	5-1 Infrared se	ensors for flam	mable gases	and vapours		
Measuring range:		0.0100%LEL		.00100Vol.%		
Resolution:		0.21.0%LEL	(0.010.5Vol.%	CH ₄	
Tolerance band:		±1.2%LEL	±	0.05Vol.% CH ₄		
Response time:		$t_{50} \leq 20 sec$	$t_{90} \le 45 \text{ sec}$	@ CH₄ (methane	e)	
		t₅₀ ≤ 25sec	$t_{90} \le 66 \text{ sec}$	@ C ₃ H ₈ (propane)	e)	
		$t_{50} \leq 30 sec$	$t_{90} \le 99 sec$ (Q C ₆ H ₁₄ (n hexar	ie)	
		t₅₀ ≤ 55sec	t ₉₀ ≤ 371sec (@ C ₉ H ₂₀ (n nonar	ne)	
Pressure	70130kPa:	<1.5% of the CH	4 display per 1%	% pressure char	ige (regarding 1	.00kPa)
		<1.2% of the C_3				
Humidity	0%95% RH: -20+50°C:	max. ±2.0 %LEL)%RH @40°C)
Temperature		max. ±2.0 %LEL			(regarding 2	
Cross sensitivities	@ 50%LEL:	Gas supply	<u>CH₄ display</u>	<u>C₃H₈ display</u> = 50%LEL	<u>n-hexane display</u> about 67%LEL	nonane display. about 80%LEL
		0.85Vol% C ₃ H ₈ 1.20Vol% C ₂ H ₆	about 145%LEL about 138%LEL		about 65%LEL	about 78%LEL
		0.70Vol% C ₂ H ₆	about 110%LEL		about 57%LEL	about 78%LEL
		1.00Vol% C ₄ H ₁₀	about 97%LEL	about 39%LEL	about 53%LEL	about 64%LEL
		0.50Vol% C ₃ H ₈ O	about 88%LEL	about 37%LEL	= 50%LEL	about 60%LEL
		0.55Vol% C ₅ H ₁₂	about 87%LEL	about 36%LEL	about 49%LEL	about 59%LEL
		0.45Vol% C ₅ H ₁₂	about 82%LEL	about 34%LEL	about 47%LEL	about 57%LEL
		1.00Vol% C ₄ H ₈ O ₂	about 69%LEL	about 31%LEL	about 41%LEL	about 50%LEL
		0.35Vol% C ₉ H ₂₀	about 65%LEL	about 31%LEL	about 41%LEL	= 50%LEL
		2.20Vol% C9H20	= 50%LEL	about 26%LEL	about 35%LEL	about 42%LEL
		2.20V0I% C⊓₄ 0.75Vol% C₄H ₈ O	<u>= 50%LEL</u> about 41%LEL	about 22%LEL	about 28%LEL	about 42%LEL
		1.25Vol% C ₄ H ₈ O	about 26%LEL	about 16%LEL	about 22%LEL	about 27%LEL
		0.50Vol% C ₇ H ₈	about 26%LEL	about 16%LEL	about 22%LEL	about 26%LEL
		They can vary from on				
Expected service li	fe:	6 years			5	
MK349-8 Electro	ochemical sens	sor for phosgen	e COCl ₂ (P	GN)		
Measuring range:		02ppm				
Resolution / tolera	nce band:	0.01ppm / ±0.02	ppm			
Response time:		t ₉₀ < 150sec				
Pressure	80120kPa:	max. ±0.02ppm d			(regarding	,
Humidity	10%95% RH:	max. ±0.02ppm @				50%RH @20°C)
Temperature	-20+40°C:	max. ±0.02ppm o		• •	(regarding	,
Cross sensitivities:		ClO ₂ : -300%; H		: 90%; Cl ₂ : 40	%; NO ₂ : -10%;	O ₃ : 10%; (*1)
Expected service li	fe:	11.5 years in a				
MK353-8 Electro		sor for phosphi	ne PH₃			
Measuring ranges:		sor for phosphi 010ppm	ne PH ₃ 020		050ppm	
Measuring ranges: Resolution / tolera		sor for phosphi 010ppm 0.05ppm / ±0.05	1e PH₃ 020 ppm 0.05p)ppm ppm / ±0.05ppm		/ / ±0.05ppm
Measuring ranges: Resolution / tolera Response time:	nce band:	sor for phosphi 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec	1e PH₃ 020 ppm 0.05p t₀₀ < 60sec	opm / ±0.05ppm	0.05ppm /	/ ±0.05ppm
Measuring ranges: Resolution / tolera Response time: Pressure	nce band: 80120kPa:	sor for phosphi 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec max. ±0.05ppm o	ne PH₃ 020 ppm 0.05p t ₉₀ < 60sec or ±10% of the c	isplay	0.05ppm /	/ ±0.05ppm 100kPa)
Measuring ranges: Resolution / tolera Response time: Pressure Humidity	nce band: 80120kPa: 15%90% RH:	sor for phosphi 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec max. ±0.05ppm (max. ±0.05ppm (ne PH₃ 020 ppm 0.05p $t_{90} < 60$ sec or $\pm 10\%$ of the c or $\pm 10\%$ of the c	opm / ±0.05ppm lisplay lisplay	(regarding (regarding	′ ±0.05ppm 100kPa) 50%RH @20°C)
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature	nce band: 80120kPa: 15%90% RH: -20+50°C:	sor for phosphi 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec max. ±0.05ppm (max. ±0.05ppm (max. ±0.05ppm (ne PH₃ 020 ppm 0.05p $t_{90} < 60$ sec or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c	lisplay lisplay lisplay lisplay	(regarding (regarding (regarding (regarding	′ ±0.05ppm 100kPa) 50%RH @20°C) 20°C)
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities:	nce band: 80120kPa: 15%90% RH: -20+50°C:	sor for phosphi 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec max. ±0.05ppm (max. ±0.05ppm (max. ±0.05ppm (SiH4:90%; GeH4:	ne PH₃ 020 ppm 0.05p $t_{90} < 60$ sec or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c	lisplay lisplay lisplay lisplay	(regarding (regarding (regarding (regarding	′ ±0.05ppm 100kPa) 50%RH @20°C) 20°C)
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li	nce band: 80120kPa: 15%90% RH: -20+50°C: fe:	sor for phosphi 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec max. ±0.05ppm of max. ±0.05ppm of max. ±0.05ppm of SiH ₄ :90%; GeH ₄ : 23 years in air	ne PH₃ 020 ppm 0.05p $t_{90} < 60$ sec or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c 90%; AsH ₃ :65%	ppm / ±0.05ppm lisplay lisplay lisplay b; B ₂ H ₆ :35%; S	(regarding (regarding (regarding (regarding	′ ±0.05ppm 100kPa) 50%RH @20°C) 20°C)
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens	sor for phosphi 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec max. ±0.05ppm (max. ±0.05ppm (max. ±0.05ppm (SiH4:90%; GeH4: 23 years in air sor for ethylene	ne PH₃ 020 ppm 0.05p $t_{90} < 60 \text{sec}$ or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c 90%; AsH ₃ :65% e oxide C₂H₄O	ipm / ±0.05ppm lisplay lisplay b; B ₂ H ₆ :35%; S	(regarding (regarding (regarding (regarding O ₂ :20%; CO:0,5%	′ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H ₂ :0.1%; (*1)
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electre Measuring ranges:	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens	sor for phosphi 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec max. ±0.05ppm c max. ±0.05ppm c max. ±0.05ppm c SiH ₄ :90%; GeH ₄ : 23 years in air sor for ethylene 020ppm	020 ppm 0.05p tyo < 60sec or ±10% of the c or ±10% of the c or ±10% of the c 90%; AsH ₃ :65% c oxide C ₂ H ₄ O 050	ppm / ±0.05ppm lisplay lisplay b; B ₂ H ₆ :35%; S (ETO)	0.05ppm / (regarding (regarding O ₂ :20%; CO:0,5% 0100pp	/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H ₂ :0.1%; (*1) m
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens	sor for phosphin 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec max. ±0.05ppm (max. ±0.05ppm (max. ±0.05ppm (SiH4:90%; GeH4: 23 years in air sor for ethylene 020ppm 0.1ppm / ±0.3pp	ne PH₃ 020 ppm 0.05p $t_{90} < 60$ sec or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c $t_{90\%}$; AsH ₃ :65% e oxide C₂H₄O 050 m 0.1pp	ipm / ±0.05ppm lisplay lisplay b; B ₂ H ₆ :35%; S	(regarding (regarding (regarding (regarding O ₂ :20%; CO:0,5%	/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H ₂ :0.1%; (*1) m
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time:	nce band: 80120kPa: 15%90% RH: -20+50°C: <u>fe:</u> ochemical sens nce band:	sor for phosphin 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec max. ±0.05ppm (max. ±0.05ppm (max. ±0.05ppm (SiH ₄ :90%; GeH ₄ : 23 years in air sor for ethylene 020ppm 0.1ppm / ±0.3pp t ₅₀ < 30sec	ne PH₃ 020 ppm 0.05p $t_{90} < 60$ sec or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c 200% ; AsH ₃ :65% 2 oxide C₂H₄O 050 m 0.1pp $t_{90} < 120$ sec	hpm / ±0.05ppm lisplay lisplay b; B ₂ H ₅ :35%; S (ETO) Dppm om / ±0.3ppm	0.05ppm / (regarding (regarding O ₂ :20%; CO:0,5% 0100pp 0.1ppm /	/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H ₂ :0.1%; (*1) m ±0.3ppm
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa:	sor for phosphin 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec max. ±0.05ppm (max. ±0.05ppm (max. ±0.05ppm (SiH ₄ :90%; GeH ₄ : 23 years in air sor for ethylene 020ppm 0.1ppm / ±0.3pp t ₅₀ < 30sec max. ±1ppm or ±	ne PH₃ 020 ppm 0.05p $t_{90} < 60 \text{sec}$ or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c sourded C_2H_4O 050 m 0.1pp $t_{90} < 120 \text{sec}$ 15% of the disp	hpm / ±0.05ppm lisplay lisplay b; B ₂ H ₆ :35%; S (ETO) Dppm hm / ±0.3ppm lay	0.05ppm / (regarding (regarding 02:20%; CO:0,5% 0100ppn 0.1ppm / (regarding	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa)</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH:	sor for phosphin 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec max. ±0.05ppm c max. ±0.05ppm c max. ±0.05ppm c SiH ₄ :90%; GeH ₄ : 23 years in air sor for ethylene 020ppm 0.1ppm / ±0.3pp t ₅₀ < 30sec max. ±1ppm or ± max. ±2ppm or ±	ne PH₃ 020 ppm 0.05p $t_{90} < 60$ sec or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c sourded C_2H_4O 050 m 0.1pp $t_{90} < 120$ sec 15% of the disp 15% of the disp	ppm / ±0.05ppm lisplay lisplay b; B ₂ H ₆ :35%; S (ETO) Dppm m / ±0.3ppm lay lay	0.05ppm / (regarding (regarding 02:20%; CO:0,5% 0100ppn 0.1ppm / (regarding (regarding (regarding	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C)</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C:	sor for phosphin 010ppm 0.05ppm / ±0.05 t ₅₀ < 20sec max. ±0.05ppm c max. ±0.05ppm c max. ±0.05ppm c SiH ₄ :90%; GeH ₄ : 23 years in air sor for ethylene 020ppm 0.1ppm / ±0.3pp t ₅₀ < 30sec max. ±1ppm or ± max. ±2ppm or ± max. ±2ppm c	ne PH₃ 020 ppm 0.05p $t_{90} < 60$ sec or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c or $\pm 10\%$ of the c $t_{90}\%$; AsH ₃ :65% c oxide C₂H₄O 050 m 0.1pp $t_{90} < 120$ sec 15% of the disp 15% of the disp or $\pm 15(20)\%$ of the disp	ppm / ±0.05ppm lisplay lisplay b; B ₂ H ₆ :35%; S (ETO) 0ppm m / ±0.3ppm lay lay lay the display	0.05ppm / (regarding (regarding 02:20%; CO:0,5% 0100ppn 0.1ppm / (regarding (regarding (regarding (regarding	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C)</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C:	Sor for phosphin 010ppm 0.05ppm / \pm 0.05 $t_{50} < 20sec$ max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (SiH4:90%; GeH4: 23 years in air Sor for ethylene 020ppm 0.1ppm / \pm 0.3pp $t_{50} < 30sec$ max. \pm 1ppm or \pm max. \pm 2ppm or \pm max. \pm 2ppm or \pm max. \pm 1[2]ppm (CO≈40%; CH4O≈	ne PH₃ 020 ppm 0.05p $t_{90} < 60 \text{sec}$ for $\pm 10\%$ of the c for $\pm 120 \text{sec}$ for $\pm 120 \text{sec}$ for $\pm 120 \text{sec}$ for $\pm 15\%$ of the disp for $\pm 15\%$ of the disp for $\pm 15(20)\%$ of the c for $\pm 150\%$; $C_2H_2 \approx 12\%$	ppm / ± 0.05 ppm lisplay lisplay b; B ₂ H ₆ :35%; S (ETO) ppm m / ± 0.3 ppm lay lay lay the display 25%; CH ₂ O ≈ 12	0.05ppm / (regarding (regarding 0₂:20%; CO:0,5% 0100ppn 0.1ppm / (regarding (regarding (regarding 0%; CH₄S≈100%	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C) 5; C₂H₄≈80%;</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electr Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities:	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C:	Sor for phosphin 010ppm $0.05ppm / \pm 0.05$ $t_{50} < 20sec$ max. $\pm 0.05ppm$ (max. $\pm 10ppm$ (max. $\pm 100ppm$ (max. $\pm 100ppm$ (max. $\pm 120ppm$ (max. $\pm 120pm$	ne PH₃ 020 ppm 0.05p $t_{90} < 60sec$ for $\pm 10\%$ of the c for $\pm 120sec$ for $\pm 120se$	ppm / ± 0.05 ppm lisplay lisplay b; B ₂ H ₆ :35%; S (ETO) ppm m / ± 0.3 ppm lay lay lay the display 25%; CH ₂ O ≈ 12	0.05ppm / (regarding (regarding 02:20%; CO:0,5% 0100ppn 0.1ppm / (regarding (regarding (regarding 0%; CH4S≈100%	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C) 5; C₂H₄≈80%;</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electr Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities:	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C:	Sor for phosphin 010ppm $0.05ppm / \pm 0.05$ $t_{50} < 20sec$ max. $\pm 0.05ppm$ (max) $\pm 0.05ppm$ (max) $\pm 0.05ppm$ (max) $\pm 0.05ppm$ (max) $\pm 0.05ppm$ (max) $\sin 4:90\%$; GeH4: 23 years in air Sor for ethylene 020ppm $0.1ppm / \pm 0.3pp$ $t_{50} < 30sec$ max) $\pm 1ppm$ or $\pm max$. $\pm 1ppm$ or $\pm max$. $\pm 2ppm$ or $\pm max$. $\pm 1[2]ppm$ (max) $CO \approx 40\%$; CH4O \approx $C_2H_6O \approx 55\%$; C4H 23 years in air	ne PH₃ 020 ppm 0.05p $t_{90} < 60 \text{sec}$ for $\pm 10\%$ of the c for $\pm 10\%$ of the c for $\pm 10\%$ of the c $t_{90\%}$; AsH ₃ :65% e oxide C₂H₄O 050 m 0.1pp $t_{90} < 120 \text{sec}$ 15% of the disp 15% of the disp 15% of the disp for $\pm 15(20)\%$ of the $\pm 150\%$; C ₂ H ₂ ≈ 12 $t_{10}O\approx 40\%$; C ₇ H ₈	ppm / ± 0.05 ppm lisplay lisplay lisplay 6; B ₂ H ₆ :35%; S (ETO) 0ppm 0m / ± 0.3 ppm lay lay lay lay she display 25%; CH ₂ O \approx 12 $_{3}\approx$ 20%; MEK \approx 10	0.05ppm / (regarding (regarding 02:20%; CO:0,5% 0100pp 0.1ppm / (regarding (regarding (regarding 0%; CH ₄ S≈100% 0%; among oth	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C) 5; C₂H₄≈80%;</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities: Expected service li Running-in time:	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C: fe:	sor for phosphil 010ppm 0.05ppm / \pm 0.05 t_{50} < 20sec max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (SiH4:90%; GeH4: 23 years in air sor for ethylene 020ppm 0.1ppm / \pm 0.3pp t_{50} < 30sec max. \pm 1ppm or \pm max. \pm 2ppm or \pm max. \pm 2ppm or \pm max. \pm 1[2]ppm (CO≈40%; CH4O≈ C ₂ H ₆ O≈55%; C ₄ H 23 years in air 4 minutes up to	ne PH₃ 020 ppm 0.05p $t_{90} < 60 \text{sec}$ or ±10% of the c or ±10% of the c or ±10% of the c 90%; AsH ₃ :65% e oxide C₂H₄O 050 m 0.1pp $t_{90} < 120 \text{sec}$ 15% of the disp 15% of the disp 150%; C ₂ H ₂ ≈12 $t_{10}O$ ≈40%; C ₇ H ₈ 7 days – depend	ppm / ± 0.05 ppm lisplay lisplay b; B ₂ H ₆ :35%; S (ETO) 0ppm pm / ± 0.3 ppm lay lay lay lay 25%; CH ₂ O \approx 12 \approx 20%; MEK \approx 11 ling on the inter	0.05ppm / (regarding (regarding (regarding O₂:20%; CO:0,5% O100ppm O.1ppm / (regarding (regarding (regarding (regarding O%; CH₄S≈100% 0%; among oth ruption time	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C) 5; C₂H₄≈80%; hers</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities: Expected service li Running-in time: MK380-8 Electro	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 10+40[50]°C: fe: ochemical sens	Sor for phosphil 010ppm $0.05ppm / \pm 0.05$ $t_{50} < 20sec$ max. $\pm 0.05ppm$ (max. $\pm 0.05ppm$ (max. $\pm 0.05ppm$ (max. $\pm 0.05ppm$ (SiH4:90%; GeH4: 23 years in air sor for ethylene 020ppm $0.1ppm / \pm 0.3pp$ $t_{50} < 30sec$ max. $\pm 1ppm$ or \pm max. $\pm 2ppm$ or \pm max. $\pm 1[2]ppm$ ($C0\approx40\%$; CH4 $0\approx$ $C_2H_60\approx55\%$; C4H 23 years in air 4 minutes up to 5 sor for carbon n	ne PH₃ 020 ppm 0.05p $t_{90} < 60 \text{sec}$ or ±10% of the c or ±10% of the c or ±10% of the c 90%; AsH ₃ :65% c oxide C₂H₄O 050 m 0.1pp $t_{90} < 120 \text{sec}$ 15% of the disp 15% of	ppm / ±0.05ppm lisplay lisplay b; B ₂ H ₆ :35%; S (ETO) 0ppm 0m / ±0.3ppm lay lay lay lay 25%; CH ₂ O≈12 ₃≈20%; MEK≈10 ling on the inter and hydroge	0.05ppm / (regarding (regarding (regarding O₂:20%; CO:0,5% O100ppm O.1ppm / (regarding (regarding (regarding (regarding O%; CH₄S≈100% 0%; among oth ruption time m sulphide H₂	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C) 5; C₂H₄≈80%; hers</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities: Expected service li Running-in time: MK380-8 Electro Measuring ranges:	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C: fe: ochemical sens	sor for phosphil 010ppm 0.05ppm / \pm 0.05 t_{50} < 20sec max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (SiH ₄ :90%; GeH ₄ : 23 years in air sor for ethylene 020ppm 0.1ppm / \pm 0.3pp t_{50} < 30sec max. \pm 1ppm or \pm max. \pm 2ppm or \pm max. \pm 2ppm or \pm max. \pm 1[2]ppm (CO≈40%; CH ₄ O≈ C ₂ H ₆ O≈55%; C ₄ H 23 years in air 4 minutes up to sor for carbon m 0500ppm CO	ne PH₃ 020 ppm 0.05p $t_{90} < 60 \text{sec}$ or ±10% of the c or ±10% of the c or ±10% of the c 90%; AsH ₃ :65% c oxide C₂H₄O 050 m 0.1pp $t_{90} < 120 \text{sec}$ 15% of the disp 15% of the disp 10% c ₂ H ₂ c ₁ C	ppm / ±0.05ppm lisplay lisplay b; B ₂ H ₅ :35%; S (ETO) 0ppm 0m / ±0.3ppm lay lay lay lay 25%; CH ₂ O≈12 ∞20%; MEK≈10 ing on the inter and hydroge 0100pp	0.05ppm / (regarding (regarding (regarding O₂:20%; CO:0,5% O100ppm O.1ppm / (regarding (regarding (regarding (regarding O%; CH₄S≈100% 0%; among oth ruption time m H_2S (at EC1)	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C) 5; C₂H₄≈80%; hers</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities: Expected service li Running-in time: MK380-8 Electro Measuring ranges: Resolution / tolera	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C: fe: ochemical sens	sor for phosphil 010ppm 0.05ppm / \pm 0.05 t_{50} < 20sec max. \pm 0.05ppm / max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (SiH ₄ :90%; GeH ₄ : 23 years in air sor for ethylene 020ppm 0.1ppm / \pm 0.3pp t_{50} < 30sec max. \pm 1ppm or \pm max. \pm 2ppm or \pm max. \pm 2ppm or \pm max. \pm 1[2]ppm (CO≈40%; CH ₄ O≈ C ₂ H ₆ O≈55%; C ₄ H 23 years in air 4 minutes up to sor for carbon n 0500ppm CO 1ppm / \pm 3ppm C	ne PH₃ 020 ppm 0.05p $t_{90} < 60 \text{sec}$ or ±10% of the c or ±10% of the c or ±10% of the c 90%; AsH ₃ :65% c oxide C₂H₄O 050 m 0.1pp $t_{90} < 120 \text{sec}$ 15% of the disp 15% of the disp 150%; C ₂ H ₂ ≈12 $t_{10}O$ ≈40%; C ₇ H ₈ 7 days - depend nonoxide CO (at EC0) O	ppm / ±0.05ppm lisplay lisplay b; B ₂ H ₅ :35%; S (ETO) 0ppm 0m / ±0.3ppm lay lay lay lay 25%; CH ₂ O≈12 ∞20%; MEK≈10 ing on the inter and hydroge 0100pp	0.05ppm / (regarding (regarding (regarding O₂:20%; CO:0,5% O100ppm O.1ppm / (regarding (regarding (regarding (regarding O%; CH₄S≈100% 0%; among oth ruption time m sulphide H₂	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C) 5; C₂H₄≈80%; hers</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities: Expected service li Running-in time: MK380-8 Electro Measuring ranges: Resolution / tolera Response time:	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C: fe: ochemical sens nce band:	Sor for phosphin 010ppm 0.05ppm / \pm 0.05 $t_{50} < 20sec$ max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (SiH4:90%; GeH4: 23 years in air Sor for ethylene 020ppm 0.1ppm / \pm 0.3pp $t_{50} < 30sec$ max. \pm 1ppm or \pm max. \pm 2ppm or \pm max. \pm 1[2]ppm (CO \approx 40%; CH4O \approx C ₂ H ₆ O \approx 55%; C ₄ H 23 years in air 4 minutes up to Sor for carbon n 0500ppm CO 1ppm / \pm 3ppm C $t_{50} < 20sec$	ne PH₃ 020 ppm 0.05p $t_{90} < 60sec$ for ±10% of the c for ±10% of the disp $t_{90} < 120sec$ 15% of the disp for ±15(20)% of the for ±15(20)% of th	ppm / ±0.05ppm lisplay lisplay b; B₂H₀:35%; S (ETO) 0ppm 0m / ±0.3ppm lay lay lay lay 25%; CH₂O≈12 ₃≈20%; MEK≈11 ling on the inter and hydroge 0100pp 0.2ppm /	0.05ppm / (regarding (regarding (regarding (regarding 0_2:20%; CO:0,5% 0100ppm 0.1ppm / (regarding (regarding (regarding (regarding 0%; CH₄S≈100% 0%; among oth ruption time m H₂S (at EC1) ±0.6ppm H₂S	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C) 5; C₂H₄≈80%; hers § (COSH)</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities: Expected service li Running-in time: MK380-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C: fe: ochemical sens nce band: 80120kPa:	sor for phosphil 010ppm 0.05ppm / \pm 0.05 $t_{50} < 20sec$ max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (SiH4:90%; GeH4: 23 years in air sor for ethylene 020ppm 0.1ppm / \pm 0.3pp $t_{50} < 30sec$ max. \pm 1ppm or \pm max. \pm 2ppm or \pm max. \pm 2ppm or \pm max. \pm 1[2]ppm (CO \approx 40%; CH4O \approx C ₂ H ₆ O \approx 55%; C ₄ H 23 years in air 4 minutes up to 5or for carbon n 0500ppm CO 1ppm / \pm 3ppm C $t_{50} < 20sec$ max. \pm 3(1)ppm (ne PH₃ 020 ppm 0.05p $t_{90} < 60sec$ for ±10% of the c for ±10% of the c power the second state of the second s	ppm / ±0.05ppm lisplay lisplay lisplay b; B ₂ H ₆ :35%; S (ETO) 0ppm m / ±0.3ppm lay lay lay lay 25%; CH ₂ O≈12 3≈20%; MEK≈11 ling on the inter and hydroge 0100pp 0.2ppm / me CO (H ₂ S) displa	0.05ppm / (regarding (regarding (regarding O₂:20%; CO:0,5% O100ppm O.1ppm / (regarding (regarding (regarding (regarding O%; CH₄S≈100% 0%; CH₄S≈100% 0%; among oth ruption time m H₂S (at EC1) ±0.6ppm H₂S y (regarding	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C) 5; C₂H₄≈80%; ners <u>5</u> (COSH) 100kPa)</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities: Expected service li Running-in time: MK380-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH:	Sor for phosphin 010ppm 0.05ppm / \pm 0.05 $t_{50} < 20sec$ max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (SiH4:90%; GeH4: 23 years in air Sor for ethylene 020ppm (0.1ppm / \pm 0.3pp $t_{50} < 30sec$ max. \pm 1ppm or \pm max. \pm 2ppm or \pm max. \pm 2ppm or \pm max. \pm 1[2]ppm (CO≈40%; CH4O≈ C_2H ₆ O≈55%; C ₄ H 23 years in air 4 minutes up to Sor for carbon n 0500ppm CO 1ppm / \pm 3ppm CC $t_{50} < 20sec$ max. \pm 3(1)ppm (ne PH₃ 020 ppm 0.05p $t_{90} < 60sec$ for ±10% of the c for ±10% of the disp for ±15(20)% of the disp for ±7(10)% of the disp	ppm / ±0.05ppm lisplay lisplay lisplay b; B₂H₀:35%; S (ETO) 0ppm m / ±0.3ppm lay lay lay lay 25%; CH₂O≈12 3≈20%; MEK≈11 ling on the inter and hydroge 0100pp 0.2ppm / me CO (H₂S) displate the CO (H₂S) displate 01010pp	0.05ppm / (regarding (regarding (regarding (regarding O₂:20%; CO:0,5% O100ppm O.1ppm / (regarding (regarding (regarding (regarding O%; CH₄S≈100% 0%; among oth ruption time m H₂S (at EC1) ±0.6ppm H₂S y (regarding y (regarding y (regarding y (regarding)	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 5; C₂H₄≈80%; ners § (COSH) 100kPa) 50%RH @20°C)</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities: Expected service li Running-in time: MK380-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: -20+50°C:	Sor for phosphin 010ppm 0.05ppm / \pm 0.05 $t_{50} < 20sec$ max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (SiH4:90%; GeH4: 23 years in air Sor for ethylene 020ppm 0.1ppm / \pm 0.3pp $t_{50} < 30sec$ max. \pm 1ppm or \pm max. \pm 2ppm or \pm max. \pm 2ppm or \pm max. \pm 1[2]ppm (CO≈40%; CH4O≈ C_2H ₆ O≈55%; C ₄ H 23 years in air 4 minutes up to Sor for carbon n 0500ppm CO 1ppm / \pm 3ppm CO $t_{50} < 20sec$ max. \pm 3(1)ppm (max. \pm 3(1)ppm (ne PH₃ 020 ppm 0.05p $t_{90} < 60sec$ for ±10% of the c for ±10% of the disp for ±15(20)% of the disp for ±15(10)% of ±15(10)% of ±15(10)% of ±15(10)% of ±15(10)% of ±1	$ppm / \pm 0.05ppm$ display display display $b; B_2H_6:35\%; S$ (ETO) ppm $pm / \pm 0.3ppm$ lay lay lay $25\%; CH_2O\approx12$ $3\approx20\%; MEK\approx10$ ling on the inter and hydroge $0100pp0.2ppm /the CO (H2S) displatthe CO (H2S) displatthe CO (H2S) displat$	0.05ppm / (regarding (regarding (regarding (regarding O₂:20%; CO:0,5% O100ppm O.1ppm / (regarding (regarding (regarding (regarding O%; CH₄S≈100% 0%; among oth ruption time m H₂S (at EC1) ±0.6ppm H₂S y (regarding y (reg	<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C) 5; C₂H₄≈80%; hers 25 (COSH) 100kPa) 50%RH @20°C) 20°C)</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electre Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities: Expected service li Running-in time: MK380-8 Electre Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities)	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: -20+50°C: CO display:	Sor for phosphin 010ppm 0.05ppm / \pm 0.05 $t_{50} < 20sec$ max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (SiH4:90%; GeH4: 23 years in air Sor for ethylene 020ppm (0.1ppm / \pm 0.3pp $t_{50} < 30sec$ max. \pm 1ppm or \pm max. \pm 2ppm or \pm max. \pm 2ppm or \pm max. \pm 1[2]ppm (CO≈40%; CH4O≈ C_2H ₆ O≈55%; C ₄ H 23 years in air 4 minutes up to Sor for carbon n 0500ppm CO 1ppm / \pm 3ppm C $t_{50} < 20sec$ max. \pm 3(1)ppm (max. \pm 3(1)ppm (M ₂ S:040%; H ₂	ne PH₃ 020 ppm 0.05p $t_{90} < 60sec$ for ±10% of the c for ±10% of the c power the second state of the second s	ppm / ±0.05ppm lisplay lisplay lisplay b; B₂H₀:35%; S (ETO) ppm m / ±0.3ppm lay lay lay lay che display 25%; CH₂O≈12 3≈20%; MEK≈11 ling on the inter and hydroge 0100pp 0.2ppm / me CO (H₂S) displate the CO (H₂S) displate be CO (H₂S) displate ling in NO₂<2%;	0.05ppm / (regarding (regarding (regarding 0_2:20%; CO:0,5% 0100ppm 0.1ppm / (regarding (regarding (regarding 0%; CH₄S≈100% 0%; CH₄S≈100% 0%; among oth ruption time In H₂S (at EC1) ±0.6ppm H₂S y (regarding y (regarding NO<0.3%; Cl₂:(<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C) 5; C₂H₄≈80%; hers 25 (COSH) 100kPa) 50%RH @20°C) 20°C) 20°C) 20°C) 20°C)</pre>
Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature Cross sensitivities: Expected service li MK379-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20 Cross sensitivities: Expected service li Running-in time: MK380-8 Electro Measuring ranges: Resolution / tolera Response time: Pressure Humidity Temperature (-20	nce band: 80120kPa: 15%90% RH: -20+50°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: 0)0+40[50]°C: fe: ochemical sens nce band: 80120kPa: 15%90% RH: -20+50°C: CO display: H ₂ S display:	Sor for phosphin 010ppm 0.05ppm / \pm 0.05 $t_{50} < 20sec$ max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (max. \pm 0.05ppm (SiH4:90%; GeH4: 23 years in air Sor for ethylene 020ppm 0.1ppm / \pm 0.3pp $t_{50} < 30sec$ max. \pm 1ppm or \pm max. \pm 2ppm or \pm max. \pm 2ppm or \pm max. \pm 1[2]ppm (CO≈40%; CH4O≈ C_2H ₆ O≈55%; C ₄ H 23 years in air 4 minutes up to Sor for carbon n 0500ppm CO 1ppm / \pm 3ppm CO $t_{50} < 20sec$ max. \pm 3(1)ppm (max. \pm 3(1)ppm (ne PH₃ 020 ppm 0.05p $t_{90} < 60sec$ for ±10% of the c for ±10% of the c power the second state of the second s	ppm / ±0.05ppm lisplay lisplay lisplay b; B₂H₀:35%; S (ETO) ppm m / ±0.3ppm lay lay lay lay che display 25%; CH₂O≈12 3≈20%; MEK≈11 ling on the inter and hydroge 0100pp 0.2ppm / me CO (H₂S) displate the CO (H₂S) displate be CO (H₂S) displate ling in NO₂<2%;	0.05ppm / (regarding (regarding (regarding 0_2:20%; CO:0,5% 0100ppm 0.1ppm / (regarding (regarding (regarding 0%; CH₄S≈100% 0%; CH₄S≈100% 0%; among oth ruption time In H₂S (at EC1) ±0.6ppm H₂S y (regarding y (regarding NO<0.3%; Cl₂:(<pre>/ ±0.05ppm 100kPa) 50%RH @20°C) 20°C) 5; H₂:0.1%; (*1) m ±0.3ppm 100kPa) 50%RH @20°C) 20°C) 5; C₂H₄≈80%; hers 250%RH @20°C) 20%C) 100kPa) 50%RH @20°C) 20°C) 20°C) 20°C)</pre>

MK383-8 Electrochemical sen	sor for oxygen O ₂	
Measuring range:	025Vol.%	
Resolution / tolerance band:	0.1Vol.% / ±0.3Vol.%	
Response time:	$t_{20} \leq 6sec$ $t_{90} \leq 20sec$	
Pressure 80120kPa:	max. ± 0.2 Vol% or $\pm 2.5\%$ of the measuring range	(regarding 100kPa)
Humidity 0%90% RH:	max. ± 0.2 Vol% or $\pm 2.5\%$ of the measuring range	(regarding 50%RH @40°C)
Temperature -20+50°C:	max. ± 0.5 Vol% or $\pm 2.5\%$ of the display	(regarding 20°C)
Expected service life:	2 years in air	
MK390-8 Electrochemical sense Measuring ranges:	010ppm 020ppm	040ppm
Resolution / tolerance band:	0.05ppm / ±0.10ppm 0.05ppm / ±0.10ppm	0.1 ppm / ± 0.1 ppm
Response time:	$t_{50} < 10 \text{sec}$ $t_{90} < 30 \text{sec}$	- FF / - FF
Pressure 80120kPa:	max. ± 0.2 ppm or $\pm 10\%$ of the display	(regarding 100kPa)
Humidity 10%95% RH:	max. ± 0.2 ppm or $\pm 10\%$ of the display	(regarding 50%RH @20°C)
Temperature -20+50°C:	max. ± 0.2 ppm or $\pm 10\%$ of the display	(regarding 20°C)
Cross sensitivities:	ClO ₂ :50%; F ₂ :40%; NO ₂ :20%; O ₃ :20%; SO ₂ :18%; C	O ₂ :0%; CO:0%; H ₂ S:0%;
	H ₂ :0% (*1)	
Expected service life:	23 years in air	
MK391-8 Electrochemical sen		
Measuring range:	02ppm	
Resolution / tolerance band:	0.01ppm / ±0.03ppm t ₉₀ < 120sec	
Response time: Pressure 80120kPa:	$t_{90} < 120$ sec max. ±0.05ppm or ±10% of the display	(regarding 100kPa)
Humidity 10%95% RH:	max. ± 0.05 ppm or $\pm 10\%$ of the display	(regarding 50%RH @20°C)
Temperature -20+50°C:	max. ± 0.05 ppm or $\pm 10\%$ of the display	(regarding 20°C)
Cross sensitivities:	$Cl_2 \approx 60\%$; O_3 :-280%; H_2 S:-25%; H_2 : 0%; CO: 0%	
Expected service life:	12 years in air	() (_)
MK392-8 Electrochemical sen		
Measuring ranges:	030ppm 050ppm	
Resolution / tolerance band:	0.2ppm / ±0.4ppm 0.2ppm / ±0.4ppm	
Response time:	$t_{50} < 30 sec$ $t_{90} < 90 sec$	
Pressure 80120kPa:	max. ± 1 ppm or $\pm 10\%$ of the display	(regarding 100kPa)
Humidity 10%95% RH:	max. ± 1 ppm or $\pm 10\%$ of the display	(regarding 50%RH @20°C)
Temperature -20+50°C:	max. ± 1 ppm or $\pm 10\%$ of the display	(regarding 20°C)
Cross sensitivities:	AsH ₃ :350%; PH ₃ :300%; H ₂ S:65%; NO:45%; SO ₂ :	
Expected convice life:	NO ₂ :3%; NH ₃ :0.1%; CO:0%; CO ₂ :0%; H ₂ :0%;	(*1)
Expected service life: MK396-8 Electrochemical sense	23 years in air	
Measuring range:	02000ppm	
Resolution / tolerance band:	2ppm / ±50ppm	
Response time:	$t_{50} < 30 \text{sec}$ $t_{90} < 90 \text{sec}$	
Pressure 80120kPa:	max. ± 10 ppm or $\pm 10\%$ of the display	(regarding 100kPa)
Humidity 15%90% RH:	max. ± 10 ppm or $\pm 10\%$ of the display	(regarding 50%RH)
Temperature -20+50°C:	max. ± 20 ppm or $\pm 20\%$ of the display	(regarding 20°C)
LIOSS SENSITIVITIES:	C ₂ H₄≈80%; NO≈35%; HCN≈30%; CO<20%; H ₂ S<20	%; NO ₂ =SO ₂ =Cl ₂ =HCl=0%;
Cross sensitivities:	C ₂ H ₄ ≈80%; NO≈35%; HCN≈30%; CO<20%; H ₂ S<20 ⁶ (*1)	%; NO ₂ =SO ₂ =Cl ₂ =HCl=0%;
Expected service life:	(*1) 23 years in air	%; NO ₂ =SO ₂ =Cl ₂ =HCl=0%;
Expected service life: MK402-8 Electrochemical sen	(*1) 23 years in air sor for hydrogen H ₂ (*2)	%; NO ₂ =SO ₂ =Cl ₂ =HCl=0%;
Expected service life: MK402-8 Electrochemical sense Measuring range:	(*1) 23 years in air sor for hydrogen H ₂ (*2) 01.00 Vol%	%; NO ₂ =SO ₂ =Cl ₂ =HCl=0%;
Expected service life: MK402-8 Electrochemical sen Measuring range: Resolution / tolerance band:	(*1) 23 years in air sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / ±0.02 Vol%	%; NO ₂ =SO ₂ =Cl ₂ =HCl=0%;
Expected service life: MK402-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time:	(*1) 23 years in air sor for hydrogen H ₂ (*2) 01.00 Vol% 0.01 Vol% / ± 0.02 Vol% $t_{50} < 40$ sec $t_{90} < 70$ sec	
Expected service life: MK402-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure 80120kPa:	(*1) 23 years in air sor for hydrogen H ₂ (*2) 01.00 Vol% 0.01 Vol% / ± 0.02 Vol% $t_{50} < 40$ sec $t_{90} < 70$ sec max. ± 0.01 Vol % or ± 10 % of the display	(regarding 100kPa)
Expected service life: MK402-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure Pressure 80120kPa: Humidity 15%90% RH:	(*1) 23 years in air sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / \pm 0.02 Vol% $t_{50} < 40$ sec $t_{90} < 70$ sec max. \pm 0.01 Vol % or \pm 10% of the display max. \pm 0.01 Vol% or \pm 10% of the display	(regarding 100kPa) (regarding 50%RH)
Expected service life:MK402-8Electrochemical senseMeasuring range: Resolution / tolerance band: Response time: Pressure80120kPa: 15%90% RH: Temperature-20+50°C:	(*1) 23 years in air sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / ± 0.02 Vol% $t_{50} < 40$ sec $t_{90} < 70$ sec max. ± 0.01 Vol % or ± 10 % of the display max. ± 0.01 Vol% or ± 10 % of the display max. ± 0.02 Vol% or ± 20 % of the display	(regarding 100kPa) (regarding 50%RH) (regarding 20°C)
Expected service life: MK402-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure Pressure 80120kPa: Humidity 15%90% RH:	(*1) 23 years in air sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / \pm 0.02 Vol% $t_{50} < 40$ sec $t_{90} < 70$ sec max. \pm 0.01 Vol % or \pm 10% of the display max. \pm 0.01 Vol% or \pm 10% of the display	(regarding 100kPa) (regarding 50%RH) (regarding 20°C)
Expected service life: MK402-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure 80120kPa: Humidity 15%90% RH: Temperature -20+50°C: Cross sensitivities: Expected service life:	(*1) 23 years in air sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / \pm 0.02 Vol% $t_{50} < 40 \text{sec}$ $t_{90} < 70 \text{sec}$ max. \pm 0.01 Vol % or \pm 10% of the display max. \pm 0.01 Vol% or \pm 10% of the display max. \pm 0.02 Vol% or \pm 20% of the display NO ₂ :-400%; CO:150%; H ₂ S:20%; C ₂ H ₄ :yes; NH ₃ =CO (*1) 23 years in air	(regarding 100kPa) (regarding 50%RH) (regarding 20°C)
Expected service life:MK402-8 Electrochemical senseMeasuring range: Resolution / tolerance band: Response time: PressurePressure80120kPa: HumidityHumidity15%90% RH: -20+50°C: Cross sensitivities:	(*1) 23 years in air sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / \pm 0.02 Vol% $t_{50} < 40 \text{sec}$ $t_{90} < 70 \text{sec}$ max. \pm 0.01 Vol % or \pm 10% of the display max. \pm 0.01 Vol% or \pm 10% of the display max. \pm 0.02 Vol% or \pm 20% of the display NO ₂ :-400%; CO:150%; H ₂ S:20%; C ₂ H ₄ :yes; NH ₃ =CO (*1) 23 years in air	(regarding 100kPa) (regarding 50%RH) (regarding 20°C)
Expected service life: MK402-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure 80120kPa: Humidity 15%90% RH: Temperature -20+50°C: Cross sensitivities: Expected service life:	(*1) 23 years in air sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / \pm 0.02 Vol% $t_{50} < 40 \text{sec}$ $t_{90} < 70 \text{sec}$ max. \pm 0.01 Vol % or \pm 10% of the display max. \pm 0.01 Vol% or \pm 10% of the display max. \pm 0.02 Vol% or \pm 20% of the display NO ₂ :-400%; CO:150%; H ₂ S:20%; C ₂ H ₄ :yes; NH ₃ =CO (*1) 23 years in air	(regarding 100kPa) (regarding 50%RH) (regarding 20°C)
Expected service life: MK402-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure Pressure 80120kPa: Humidity 15%90% RH: Temperature -20+50°C: Cross sensitivities: Expected service life: MK403-8 Electrochemical sense	(*1) 23 years in air sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / \pm 0.02 Vol% t ₅₀ < 40sec t ₉₀ < 70sec max. \pm 0.01 Vol% or \pm 10% of the display max. \pm 0.01 Vol% or \pm 10% of the display max. \pm 0.02 Vol% or \pm 20% of the display NO ₂ :-400%; CO:150%; H ₂ S:20%; C ₂ H ₄ :yes; NH ₃ =CO (*1) 23 years in air sor for hydrogen H₂ (*2)	(regarding 100kPa) (regarding 50%RH) (regarding 20°C)
Expected service life: MK402-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure 80120kPa: Humidity 15%90% RH: Temperature -20+50°C: Cross sensitivities: Expected service life: MK403-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time:	(*1) 23 years in air sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / \pm 0.02 Vol% t ₅₀ < 40sec t ₉₀ < 70sec max. \pm 0.01 Vol % or \pm 10% of the display max. \pm 0.01 Vol% or \pm 10% of the display max. \pm 0.02 Vol% or \pm 20% of the display NO ₂ :-400%; CO:150%; H ₂ S:20%; C ₂ H ₄ :yes; NH ₃ =CO (*1) 23 years in air sor for hydrogen H₂ (*2) 04.00 Vol%	(regarding 100kPa) (regarding 50%RH) (regarding 20°C)
Expected service life: MK402-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure Pressure 80120kPa: Humidity 15%90% RH: Temperature -20+50°C: Cross sensitivities: Expected service life: MK403-8 Electrochemical sense Measuring range: Resolution / tolerance band:	(*1) 23 years in air sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / \pm 0.02 Vol% t ₅₀ < 40sec t ₉₀ < 70sec max. \pm 0.01 Vol % or \pm 10% of the display max. \pm 0.01 Vol% or \pm 10% of the display max. \pm 0.02 Vol% or \pm 20% of the display NO ₂ :-400%; CO:150%; H ₂ S:20%; C ₂ H ₄ :yes; NH ₃ =CO (*1) 23 years in air sor for hydrogen H₂ (*2) 04.00 Vol% 0.01 Vol% / \pm 0,05 Vol% t ₅₀ < 40sec t ₉₀ < 60sec max. \pm 0.01 Vol% or \pm 10% of the display	(regarding 100kPa) (regarding 50%RH) (regarding 20°C) D ₂ =Cl ₂ =SO ₂ =HCN=0%;
Expected service life: MK402-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure Pressure 80120kPa: Humidity 15%90% RH: Temperature -20+50°C: Cross sensitivities: Expected service life: MK403-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure 80120kPa: Humidity 15%90% RH:	(*1) 23 years in air Sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / \pm 0.02 Vol% t ₅₀ < 40sec t ₉₀ < 70sec max. \pm 0.01 Vol % or \pm 10% of the display max. \pm 0.01 Vol% or \pm 20% of the display max. \pm 0.02 Vol% or \pm 20% of the display NO ₂ :-400%; CO:150%; H ₂ S:20%; C ₂ H ₄ :yes; NH ₃ =CO (*1) 23 years in air Sor for hydrogen H₂ (*2) 04.00 Vol% 0.01 Vol% / \pm 0,05 Vol% t ₅₀ < 40sec t ₉₀ < 60sec max. \pm 0.01 Vol% or \pm 10% of the display max. \pm 0.01 Vol% or \pm 10% of the display	(regarding 100kPa) (regarding 50%RH) (regarding 20°C) $D_2=Cl_2=SO_2=HCN=0\%$; (regarding 100kPa) (regarding 50%RH)
Expected service life: MK402-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure Pressure 80120kPa: Humidity 15%90% RH: Temperature -20+50°C: Cross sensitivities: Expected service life: MK403-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure Pressure 80120kPa: Humidity 15%90% RH: Temperature -20+50°C:	(*1) 23 years in air sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / \pm 0.02 Vol% t ₅₀ < 40sec t ₉₀ < 70sec max. \pm 0.01 Vol % or \pm 10% of the display max. \pm 0.01 Vol% or \pm 20% of the display max. \pm 0.02 Vol% or \pm 20% of the display NO ₂ :-400%; CO:150%; H ₂ S:20%; C ₂ H ₄ :yes; NH ₃ =CO (*1) 23 years in air sor for hydrogen H₂ (*2) 04.00 Vol% 0.01 Vol% / \pm 0,05 Vol% t ₅₀ < 40sec t ₉₀ < 60sec max. \pm 0.01 Vol% or \pm 10% of the display max. \pm 0.01 Vol% or \pm 10% of the display max. \pm 0.02 Vol% or \pm 25% of the display	(regarding 100kPa) (regarding 50%RH) (regarding 20°C) $D_2=Cl_2=SO_2=HCN=0\%$; (regarding 100kPa) (regarding 50%RH) (regarding 20°C)
Expected service life: MK402-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure Pressure 80120kPa: Humidity 15%90% RH: Temperature -20+50°C: Cross sensitivities: Expected service life: MK403-8 Electrochemical sense Measuring range: Resolution / tolerance band: Response time: Pressure 80120kPa: Humidity 15%90% RH:	(*1) 23 years in air Sor for hydrogen H₂ (*2) 01.00 Vol% 0.01 Vol% / \pm 0.02 Vol% t ₅₀ < 40sec t ₉₀ < 70sec max. \pm 0.01 Vol % or \pm 10% of the display max. \pm 0.01 Vol% or \pm 20% of the display max. \pm 0.02 Vol% or \pm 20% of the display NO ₂ :-400%; CO:150%; H ₂ S:20%; C ₂ H ₄ :yes; NH ₃ =CO (*1) 23 years in air Sor for hydrogen H₂ (*2) 04.00 Vol% 0.01 Vol% / \pm 0,05 Vol% t ₅₀ < 40sec t ₉₀ < 60sec max. \pm 0.01 Vol% or \pm 10% of the display max. \pm 0.01 Vol% or \pm 10% of the display	(regarding 100kPa) (regarding 50%RH) (regarding 20°C) $D_2=Cl_2=SO_2=HCN=0\%$; (regarding 100kPa) (regarding 50%RH) (regarding 20°C)

MK409-8 Electrochemical sens	or for hydrogen cyanide HCN	
Measuring ranges:	050ppm 0100ppm	
Resolution / tolerance band:	0.1ppm / ±0.5ppm 0.2ppm / ±1.0ppm	
Response time:	$t_{50} < 25sec$ $t_{90} < 60sec$	(recording 100kDa)
Pressure 80120kPa: Humidity 10%95% RH:	max. ± 0.5 ppm or $\pm 10\%$ of the display max. ± 0.5 ppm or $\pm 10\%$ of the display	(regarding 100kPa) (regarding 50% RH @20°C)
Temperature -20+50°C:	max. ± 0.5 ppm or $\pm 15\%$ of the display	(regarding 20°C)
Cross sensitivities:	NO ₂ \approx -70%, NO \approx -5%, H ₂ S \approx 0200% (depending on the filter	
	$CO=CO_2=H_2=0\%$ (*1)	,
Expected service life:	2 years in air	
	mical sensors for hydrogen fluoride HF	
Measuring ranges:	010ppm 010ppm 010ppm	E_{nnm} (MK412.0)
Resolution / tolerance band: Response time:	$0.1ppm / \pm 0.3ppm (MK412-3)$ $0.5ppm / \pm 0.5ppm / \pm 0$	5ppm (MK412-9)
Pressure 80120kPa:	max. ± 0.2 ppm or $\pm 10\%$ of the display	(regarding 100kPa)
Humidity 10%80% RH:	max. ± 0.2 ppm or $\pm 10\%$ of the display	(regarding 50%RH @20°C)
Temperature -20+40°C:	max. ± 0.2 ppm or $\pm 10\%$ of the display	(regarding 20°C)
Cross sensitivities:	HCI:66%; Cl ₂ :40%; CO=CO2=NO2=H2S=H2=0%	(*1)
Expected service life:	12 years in air	
MK427-8 Electrochemical sense		
Measuring range:	025 Vol%	
Resolution / tolerance band:	0.1 Vol% / ±0.3 Vol%	
Response time: Pressure (70)80120(130)kPa:	$t_{20} \le 8 \text{sec}$ $t_{90} \le 25 \text{sec}$ max. $\pm 0.4(0.6) \text{Vol.\% or } \pm 2(3)\%$ of the measuring range	(regarding 100kPa)
Humidity 0%95% RH:	max. ± 0.5 Vol.% or ± 2.5 % of the measuring range	(regarding 50%RH @40°C)
Temperature (-20)-10+55°C:	max. $\pm 0.5(0.8)$ Vol.% or $\pm 2.5(4.0)$ % of the display	(regarding 20°C)
Expected service life:	3 years in air	
MK432-8 Electrochemical sense	sor for oxygen O ₂	
Measuring range:	025 Vol%	
Resolution / tolerance band:	0.1 Vol% / ±0.3 Vol%	
Response time:	$t_{20} \leq 8 \sec t_{90} \leq 25 \sec$	
Pressure 70130kPa: Humidity 15%90% RH:	max. ± 0.3 Vol% or $\pm 3.0\%$ of the display max. ± 0.5 Vol% or $\pm 3.0\%$ of the display	(regarding 100kPa) (regarding 50%RH @40°C)
Temperature -20+50°C:	max. ± 0.5 Vol% of $\pm 3.0\%$ of the display	(regarding 20°C)
Expected service life:	5 years in air	(regularing 20 c)
MK440-8 Electrochemical sense		
Measuring ranges:	010ppm 020ppm 050ppm	0100ppm
Resolution:	0.05ppm 0.05ppm 0.1ppm	0.1ppm
Tolerance band:	±0.15ppm ±0.20ppm ±0.3ppm	±0.4ppm
Response time:	$t_{50} < 10 \text{sec}$ $t_{90} < 30 \text{sec}$	
Pressure 80120kPa: Humidity 15%90% RH:	max. ± 0.2 ppm or $\pm 5\%$ of the display max. ± 0.3 ppm or $\pm 3\%$ of the display	(regarding 100kPa) (regarding 50%RH @20°C)
Temperature -20+50°C:	max. ± 0.3 ppm or $\pm 5\%$ of the display max. ± 0.3 ppm or $\pm 5\%$ of the display	(regarding 20°C)
Cross sensitivities:	$C_2H_2 < 300\%; NO_2 < -170\%; C_2H_4 < 90\%; HCN < 50\%; Cl$	
	$H_2S<0,4\%$; CO<0,4%; $H_2<0,3\%$; NH ₃ =0%; (*1)	
Expected service life:	3 years in air	
MK443-8 Electrochemical sens	or for carbon monoxide CO	
Measuring ranges:	3500ppm 31000ppm	32000ppm
Resolution / tolerance band:	1ppm / ±3ppm 1ppm / ±3ppm	1ppm / ±3ppm
Response time:	$t_{50} < 10 \text{sec}$ $t_{90} \le 30 \text{sec}$ $t_{10} < 30 \text{sec}$ (decay t max. $\pm 3 \text{ppm}$ or $\pm 10\%$ of the display	(ime) (regarding 100kPa)
Pressure 80120kPa: Humidity 15%95% RH:	max. ± 3 ppm or $\pm 5\%$ of the display	(regarding 50%RH @20°C)
Temperature -20+40(55)°C:	max. \pm 3ppm or \pm 5(10)% of the display	(regarding 20°C)
Cross sensitivities:	$C_2H_4 \approx 96\%$, $C_2H_2 \approx 90\%$, $H_2 < 30\%$ (typ.15%), NO<20%,	
	$SO_2 = NH_3 = H_2S = 0\%$ (*1)	
Expected service life:	3 years in air	
MK445-8 Electrochemical sens		
Measuring ranges:	0.250ppm 0.2100ppm 0.2200ppn	
Resolution: Tolerance band:	0.1ppm 0.1ppm 0.2ppm ±0.5ppm ±0.5ppm ±1.0ppm	0.5ppm ±1.5ppm
Response time:	$\pm 0.5ppm$ $\pm 0.5ppm$ $\pm 1.0ppm$ $t_{50} < 10sec$ $t_{90} < 30sec$ $t_{10} < 30sec$ (decay t	
Pressure 80120kPa:	max. ± 0.2 ppm or $\pm 5\%$ of the display	(regarding 100kPa)
Humidity 15%90% RH:	max. ± 0.2 ppm or $\pm 5\%$ of the display	(regarding 50%RH @20°C)
Temperature -20+40(55)°C:	max. ± 0.2 ppm or $\pm 5(10)$ % of the display	(regarding 20°C)
Cross sensitivities:	NO ₂ <10%, CO<2%, NO<1%, CO ₂ =SO ₂ =Cl ₂ =NH ₃ =C ₂	2H4=0%
Closs sensitivities.		
Expected service life:	little Methanol cross sensitivity (*1) 3 years in air	

MK453-8 Electrochemical sense	sor for ammonia NH ₃	
Measuring ranges:	0500ppm 0500ppm	
Resolution / tolerance band:	1ppm / ±3ppm 1ppm / ±3ppm	
Response time:	t ₉₀ < 45sec	
Pressure 80120kPa:	max. ± 1 ppm or $\pm 10\%$ of the display	(regarding 100kPa)
Humidity 15%90% RH:	max. ± 1 ppm or $\pm 10\%$ of the display	(regarding 50%RH @20°C)
Temperature -(20)10+50°C:	max. $\pm 1(2)$ ppm or $\pm 15(20)\%$ of the display	(regarding 20°C)
Cross sensitivities:	- , - , - ,	$CO_2 = H_2 = C_2 H_6 O = 0\%$ (*1)
Expected service life:	23 years in pure air	
MK454-8 Electrochemical sens		
Measuring ranges:	0500ppm 01000ppm	01500ppm
Resolution / tolerance band:	2ppm / ±5ppm 5ppm / ±10ppm	5ppm / ±10ppm
Response time:	$t_{90} < 60 sec$	(at 20°C)
Pressure 80120kPa:	max. \pm 5ppm or \pm 10% of the display	(regarding 100kPa)
Humidity 15%90% RH:	max. \pm 5ppm or \pm 10% of the display	(regarding 50%RH @20°C)
Temperature -20+55°C:	max. ± 10 ppm or $\pm 20\%$ of the display	(regarding 20°C)
Cross sensitivities:	- , - , - ,	$CO_2 = H_2 = C_2 H_6 O = 0\%$ (*1)
Expected service life:	23 years in pure air	
MK457-8 Electrochemical sense		
Measuring ranges:	050ppm 0100ppm	0200ppm
Resolution / tolerance band:	0.2ppm / ±1.5ppm 0.5ppm / ±2.0ppm	0.5ppm / ±2.0ppm
Response time:	$t_{50} < 15sec$ $t_{90} < 45sec$	(at 20°C)
Pressure 80120kPa:	max. ± 1 ppm or $\pm 10\%$ of the display	(regarding 100kPa)
Humidity 15%90% RH:	max. ± 1 ppm or $\pm 10\%$ of the display	(regarding 50%RH @20°C)
Temperature -20+40(50)°C:	max. ± 2 ppm or $\pm 10\%$ of the display	(regarding 20°C)
Cross sensitivities:	$H_2S<50\%; NO_2<40\%; C_2H_6O \pm 10\%; SO_2<5\%; H_2$	<1%; NH ₃ <1%; CO<-1%; CO ₂ =CL ₂ =0; (*1)
Expected service life:	3 years in air	
Running-in time:	3 minutes to 1 day – depending on the interruptio	n time
MK458-8 Electrochemical sens		
Measuring ranges:	030ppm 050ppm	0100ppm
Resolution / tolerance band:	0.1ppm / ±0.3ppm 0.1ppm / ±0.5ppm	0.1ppm / ±0.5ppm
Response time:	$t_{50} < 10 sec$ $t_{90} < 30 sec$	(at 20°C)
Pressure 80120kPa:	max. ± 0.2 ppm or $\pm 10\%$ of the display	(regarding 100kPa)
Humidity 15%90% RH:	max. ± 0.2 ppm or $\pm 10\%$ of the display	(regarding 50%RH @20°C)
Temperature -20+50°C:	max. ± 0.2 ppm or $\pm 10\%$ of the display	(regarding 20°C)
Cross sensitivities:	Cl ₂ ≈100%; H ₂ S<-40%; NO<20%; C ₂ H ₆ O<1%; CO<-1	
		NH3<-1%, CO2=0; (*1)
Expected service life:	3 years in air	
MK460-8 Electrochemical sense		
Measuring ranges:	020ppm 050ppm	
Resolution / tolerance band:	0.1ppm / ±0.2ppm 0.1ppm / ±0.2ppm	
Response time:	$t_{50} < 20sec$ $t_{90} < 60sec$	
Pressure 80120kPa:	max. ± 0.1 ppm or $\pm 10\%$ of the display	(regarding 100kPa)
Humidity 15%90% RH:	max. ± 0.2 ppm or $\pm 10\%$ of the display	(regarding 50%RH @20°C)
	many 10 2mmman 100/ of the display	(regarding 20°C)
Temperature -20+50°C:	max. ± 0.3 ppm or $\pm 10\%$ of the display	
Temperature -20+50°C: Cross sensitivities: Expected service life:	Hax. ±0.3ppm or ±10% of the display H ₂ S \approx 160%, PH ₃ \approx 100%; SO ₂ \approx 20%; H ₂ =CO=0%; 23 years in air	

For (*1): Gas display regarding the supplied concentration in the range of AGW (MAK) values For (*2): Not permitted for the monitoring of the lower explosion limit for applications of the primary explosion protection

3.11 Alarm limit values - Basic setting

Basic setting of the alarm thresholds for toxic gases without exposure alert

Measuring range	Alarm 1	Alarm 2	STEL (15')	TWA (8h)
0 20ppm C ₂ H ₄ O (ETO)	2.0ppm	4.0ppm	-	-
0 10ppm Cl ₂	0.5ppm	1.0ppm	-	-
0 2ppm ClO_2 (CLO)	0.2ppm (*1)	0.4ppm		
0 $2ppm COCl_2$ (PGN)	0.1ppm	0.2ppm		
0 500ppm CO	30ppm	60ppm	-	-
0 5,0Vol.% CO ₂	0.5Vol.%	1.0Vol.%	-	-
0 100ppm H ₂ S	5.0ppm	10ppm	-	-
0 30ppm HCl	5.0ppm (*1)	10ppm	-	-
0 50ppm HCN	5.0ppm (*1)	10ppm	-	-
0 10ppm HF	1.0ppm	2.0ppm	-	-
0 300ppm NH ₃	20ppm	40ppm	-	-
0 100ppm NO	2.5ppm (*1)	5.0ppm	-	-
0 30ppm NO ₂	2.0ppm (*1)	4.0ppm	-	-
0 10ppm PH ₃	0.3ppm (*1)	0.6ppm	-	-
0 20ppm SiH ₄ (SIL)	5.0ppm	10ppm	-	-
0 10ppm SO ₂	1.0ppm	2.0ppm	-	-

For (*1): A monitoring of the AGW value is not satisfactory possible with the available sensor technology.

Basic setting of the alarm thresholds for toxic gases with exposure alert

Measuring range	Alarm 1	Alarm 2	STEL (15')	TWA (8h)
0 20ppm C ₂ H ₄ O	2ppm	6ppm	4ppm	2ppm
0 10ppm Cl ₂	1.0ppm	1.5ppm	1.0ppm	0.5ppm
0 2ppm ClO ₂	0.2ppm	0.4ppm	0.2ppm	0.1ppm
0 2ppm COCl ₂	0.1ppm	0.2ppm	0.2ppm	0.1ppm
0 500ppm CO	30ppm	120ppm	60ppm	30ppm
0 5.0Vol.% CO ₂	0.5Vol.%	2.0Vol.%	1.0Vol.%	0.5Vol.%
0 100ppm H ₂ S	5.0ppm	15ppm	10ppm	5.0ppm
0 30ppm HCl	5.0ppm	10ppm	5.0ppm	2.0ppm
0 50ppm HCN	5.0ppm	10ppm	5.0ppm	1.9ppm
0 10ppm HF	1.0ppm	3.0ppm	2.0ppm	1.0ppm
0 300ppm NH ₃	20ppm	80ppm	40ppm	20ppm
0 100ppm NO	2.5ppm	5.0ppm	2.5ppm	0.5ppm
0 30ppm NO ₂	2.0ppm	4.0ppm	2.0ppm	0.5ppm
0 10ppm PH ₃	0.3ppm (*1)	0.4ppm	0.2ppm	0.1ppm
0 20ppm SiH ₄	5.0ppm	15ppm	10ppm	5.0ppm
0 10ppm SO ₂	1.0ppm	3.0ppm	2.0ppm	1.0ppm

For (*1): A monitoring of the AGW value is not satisfactory possible with the available sensor technology.

Basic setting of the alarm thresholds for oxygen and for flammable gases and vapours

Measuring range	Alarm 1	Alarm 2	Alarm 3
0 25Vol.% O ₂	19.0Vol.% (↓)	17.0Vol. (∜)	23.0Vol.% (î)
0 2000ppm H ₂ (*2)	1000ppm	1500ppm	2000ppm
0 1.0/4.0Vol.% H ₂ (*2)	0.40Vol.%	0.60Vol.%	0.80Vol.%
0 5.0Vol.% CH ₄	1.00Vol.%	2.00Vol.%	3.00Vol.%
0 100%LEL CH ₄ (*3)	20.0%LEL	40.0%LEL	60.0%LEL

For (*2): Not permitted for the monitoring of the lower explosion limit for applications of the primary explosion protection. For (*3): or another of the following listed flammable gases and vapours

LEL values acco	ording to th	e DIN EN 60079-2	20-1:2010		
4.0Vol.% H ₂	hydrogen	(CAS-No.1333-74-0)	6.0Vol.% CH ₄ O	methanol	(CAS-No.67-56-1)
4.4Vol.% CH ₄	methane	(CAS-No.74-82-8)	3.1Vol.% C ₂ H ₆ O	ethanol	(CAS-No.64-17-5)
2.3Vol.% C ₂ H ₂	acetylene	(CAS-No.74-86-2)	2.5Vol.% C ₃ H ₆ O	acetone	(CAS-No.67-64-1)
2.3Vol.% C ₂ H ₄	ethylene	(CAS-No.74-85-1)	3.1Vol.% C ₃ H ₆ O ₂	methyl acetate	(CAS-No.79-20-9)
2.4Vol.% C ₂ H ₆	ethane	(CAS-No.74-84-0)	2.7Vol.% C ₃ H ₆ O ₂	ethyl formate ETF	(CAS-No.109-94-4)
1.7Vol.% C ₃ H ₈	propane	(CAS-No.74-98-6)	2.0Vol.% C ₃ H ₈ O	isopropyl	(CAS-No.67-63-0)
1.4Vol.% C ₄ H ₁₀	butane	(CAS-No.106-97-8)	1.5Vol.% C ₄ H ₈ O	methyl ethyl ketone MEK	(CAS-No.78-93-3)
1.1Vol.% C ₅ H ₁₂	pentane	(CAS-No.109-66-0)	2.0Vol.% C ₄ H ₈ O ₂	ethyl acetate	(CAS-No.141-78-6)
1.0Vol.% C ₆ H ₁₄	n-hexane	(CAS-No.110-54-3)	1.4Vol.% C ₄ H ₁₀ O	n-butanol	(CAS-No.71-36-3)
0.85Vol.% C ₇ H ₁₆	heptane	(CAS-No.142-82-5)	1.2Vol.% C ₆ H ₁₂ O	Methyl isobutyl ketone MIBK	(CAS-No.108-10-1)
0-70Vol.% C ₉ H ₂₀	n-nonane	(CAS-No.111-84-2)	1.0Vol.% C ₇ H ₈	toluene	(CAS-No.108-88-3)

3.12 Technical data

Type design	ations:	G888C				
Measuring p	orinciple:	Electrochemical (EC): Catalytic combustion (CC): Infrared (IR):	For toxic gases and oxygen For flammable gases and vapours (up to 100%LEL) For flammable gases and vapours and carbon dioxide			
Measuring r	anges:	refer to the section "Sensor types and measuring ranges" and "Sensor specification"				
Response ti	me:	refer to the section "Sensor specification"				
Sensor servi	ice life:	refer to the section "Sensor specification"				
Measuring g	as supply:	above the diffusion opening				
Display:		illuminated LCD full graphics display, automatic size setting for optimum reading, display of the battery capacity, gas concentration as current value and peak value				
Alerting:		alarms, battery alarm with v	B or 2 momentary value and 2 exposure level visual and acoustical signalling as well as r of the display depending on the alarm state duced to 90 dB(A))			
	nd sensitivity		n adjustment program, if necessary, test gas			
adjustment:		supply via the "SMART CAP"				
Radio:optionally 868MHz for EU;Range about 700m (free field optionally 915MHz for US;Range about 300m (free field						
Energy supp	olv:	NiMH battery module; 2.6V				
Operating ti	-	, , ,	, 5			
•	Without radio:	about 13h (EC+CC _{PS} +IR)	about 9h (EC+CC+IR)			
		about 21h (EC+CC _{PS})	about 13h (EC+CC)			
		about 65h (EC)	about 23h (EC+IR)			
	With radio:	about 10h (EC+CC _{PS} +IR)	about 7.5h (EC+CC+IR)			
		about 14h (EC+CC _{PS})	about 10h (EC+CC)			
		about 26h (EC)	about 15h (EC+IR)			
Climatic con	ditions					
	For operation:	-20+50°C 595%RH	70130kPa			
	For storage:	-25+55°C 595%RH	70130kPa (recommended 0+30°C)			
Housing	Material:	rubberised polycarbonate				
	Dimensions:	68 x 100 x 39mm (W x H x	D)			
	Weight:	up to 275g (depending on th	ne sensor equipment)			
	Protection class:	IP67				
Approvals /	Tests					
	Markings and					
	protection type:	G888C 🐼 I M2 Ex ia db I M	4b ⓑ II 2G Ex ia db IIC T4 Gb -20°C≤Ta≤+50°C			
	mination certificate:	BVS 15 ATEX E 064 X				
IECEx Certifi	cate of Conformity:	IECEx BVS 15.0056 X				
	Electromagnetic Compatibility:		d interference: Type class I rence resistance: Type class II			

For (*1): The service life is indicated for new battery modules at operating temperatures of +20°C. It will be reduced by pressing buttons (display lighting & lamp) and by gas alarms. It is reduced with the age of the battery module, with the number of the charging / discharging cycles, by longer storage of the gas measurement device in the charging tray and the lazy battery effect. CC_{PS}= Catalytic sensor with activated PowerSave mode if a reading of 0% LEL is detected. This energy saving mode can only be activated for certain measuring ranges (see section 2.3.2.2.5).

EU Declaration of Conformity GfG Gesellschaft für Gerätebau mbH Klönnestraße 99 44143 Dortmund G888C, G888S Tel· +49 (231) 56400-0 +49 (231) 516313 Fax: E-Mail: info@gfg-mbh.com Edited: 31.07.2017 Amended: 02.03.2018 www.gfg.biz GfG Gesellschaft für Gerätebau mbH develops produces and sells gas sensors and gas warning devices which are subject to a quality management system as per DIN EN ISO 9001. Subject to supervision by means of a quality system, surveilled by the notified body, DEKRA EXAM GmbH (0158), is the production of electrical apparatus of instrumentation Group I and II, categories M1, M2, 1G and 2G for gas sensors, gas detectors, gas warning systems in types of protection flameproof enclosures, increased safety, encapsulation and intrinsic safety, as well as their measuring function. The portable detector G8888C, G888S complies with directive 2014/34/EU (ATEX) for devices and protective systems for proper use in potentially explosive atmospheres, directive 2014/30/EU for electromagnetic compatibility, directive 2014/53/EU (RED) relating to the making available on the market of radio equipment and with directive 2011/65/EU (RoHS) on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

For electrical explosion protection	BVS 15 ATEX E 064 X
Labelling G888C:	🐵 II 2G Ex ia db IIC T4 Gb / 🐵 I M2 Ex ia db I Mb
Labelling G888S:	II 2G Ex ia db IIC T4 Gb / I M1 Ex ia I Ma

The directive 2014/34/EU is complied considering the following standards:

I ne directive 2014/34/EU is complied considering the following standards:	
Explosive atmospheres	
- General requirements EN 60079-0 : 2012 +A11 :2013	
- Flameproof enclosure "d" EN 60079-1 : 2014	
- Intrinsic safety "i" EN 60079-11 : 2012	
- Group1, category-M1-equipment EN 50303 : 2000	
The rating of the danger of ignition was done and documented. The EC-Type Examination Certificate was issued by the notified body with ID number 0158 (DEKRA EXAM, DimendahistraBe 9, D-44809 Bochum).	Ŷ
The directive 2014/30/EU is complied considering the following standard:	
- Electromagnetic compatibility - Electrical apparatus for the detection and measurement	
of combustible gases, toxic gases or oxygen EN 50270 : 2015	
Emitted interference Type class 1	
Interference immunity Type class 2	
The EMC test laboratory AMETEK CTS Germany GmbH at Kamen has tested and certified the electromagnetic compatibility.	
The directive 2014/53/EU is complied considering the following standards:	
- Short Range Devices (SRD) operating in the frequency range 25 MHz bis 1000 MHz	
EN 300220-2 V3.11 : 2017	
Reference to the directive 2014/30/EU:	
- ElectroMagnetic Compatibility (EMC) standard for radio equipment and services	
Common technical requirements EN 301489-1 V2.2.0 : 2017	
Reference to the directive 2014/35/EU:	
 Assessment of the compliance of low power and electronic and electrical equipment with the 	
 Assessment of the compliance of low power and electronic and electrical equipment with the basic restrictions related to human exposure to electromagnetic fields 	
(10 MHz – 300GHz) EN 62479 : 2010 - Information technology equipment- safety	
General requirements EN 60950-1: 2006 + A11: 2009 + A1: 2010 + A12: 2011 + AC: 2011 +	
A2: 2013 The test laboratory m.dudde hochfrequenz-technik, Bergisch Gladbach has tested and certified the compatibility.	
me test inductory in audue nuclin equenz-retrink, dergisch Gioubach has tested and tertined are compationity.	
The directive 2011/65/EU is complied considering the following standard:	
- Technical documentation for the assessment of electrical and electronic products with respect	
to the restriction of hazardous substances EN 50581 : 2012	
Dortmund, 06 March 2018	
*	
11 R Marhenin	
L.V. D. / //////////	

B. Siebrecht QMB

NTRY PLEASATAR/wheeky

EREA D DEKRA D DEKRA D DEKRA D DEKRA RRA D D DEKRA RRA D D DEKRA Translation **EU-Type Examination Certificate Supplement 3** EKRA Equipment intended for use in potentially explosive atmospheres 2 Directive 2014/34/EU 3 EU-Type Examination Certificate Number: BVS 15 ATEX E 064 X \square 4 Product: Gas detector Type G888C Type G888S Type G999C Type G999S Type G999E Type G999P Manufacturer; GfG Gesellschaft für Gerätebau mbH 5 6 Address: Klönnestr. 99, 44143 Dortmund, Germany 0.92 7 This supplementary certificate extends EU-Type Examination Certificate No. BVS 15 ATEX E 064 X to apply to products designed and constructed in accordance with the specification set out in the appendix of the said certificate but having any acceptable variations specified in the appendix to this certificate and the documents referred to therein 8 DEKRA EXAM GmbH, Notified Body number 0158 / in accordance with Article 17 of Directive 2014/34/EU of the European Parliament and of the Council / dated 26 February 2014, certifies that this product has been found to comply with the Essential Health and Safety Requirements relating to the design and construction of products intended for use in potentially explosive atmospheres given in Annex II to the Directive. The examination and test results are recorded in the confidential Report No/ BVS PP 15 2110 EU Compliance with the Essential Health and Safety Requirements has been assured by compliance with 9 EN 60079-0:2012 + A11:2013 / General requirements EN 60079-1:2014 Flameproof enclosure //d/ EN 60079-11:2012 Intrinsic Safety "i" If the sign "X" is placed after the certificate number /tr indicates that the product is subject to the 10 Special Conditions for Use specified in the appendix to this certificate 11 This EU-Type Examination Certificate relates only to the design and construction of the specified product. Further requirements of the Directive apply to the manufacturing process and supply of this product. These are not covered by this certificate. 12 The marking of the product shall include the following: II 2G Ex la db IIC T4 Gb for type G888C / G999C / G999S I M2 Ex ia db I Mb II 2G Ex ia db IIC T4 Gb for type G888S ⟨€x⟩ I M1 Ex ia I Ma II 1G Ex ia IIC T4 Ga for type G999E, G999P I M1 Ex ia I Ma DEKRA EXAM GmbH Bochum, 2018-01-02 Signed: Jörg Koch Signed: Dr. Franz Eickhoff Certifier Approver Page 1 of 3 of BVS 15 ATEX E 064 X / N3 This certificate may only be reproduced in its entirety and without any change (DARKS

13	Appendix					
14	EU-Type Examination Ce	rtificate		3		
	BVS 15 ATEX E 064 X Supplement 3					
15	Product description					
15.1	Subject and type					
	The Gas detector is modifie test and assessment report	ed according t and receive	to the descriptive doc s then the marking:	uments as me	ntioned in the p	ertinent
	Gas detector type G888C Gas detector type G888S	Marking: Marking:	ll 2G Ex ia db IIC T Il 2G Ex ia db IIC T		V12 Ex la db I M V1 Ex la I Ma	Ъ
	Gas detector type G999C Gas detector type G999S	Marking: Marking:	II 2G Ex ia db IIC T II 2G Ex ia db IIC T	\$0,996080	42 Ex la db M 42 Ex la db M	
	Gas detector type G999E Gas detector type G999P	Marking: Marking:	ll 1G Ex ia IIC T4 G Il 1G Ex ia IIC T4 G	CSSC COMPANY IN THE TRANSPORT	A1 Ex ia I Ma A1 Ex ia I Ma	
15.2	Description					
	Reason for the suppleme	nt:				
	The Gas detector type G99 The Gas detectors type G99 The standard EN 60303.20 Gas detector are compiled Description of Product: The Gas detector type G88 type G999P is a portable in of gases in ambient air und The Gas detector type G88 3 electro-chemical cells, 1 The Gas detector type G99	99E and typ C0 is no long by the stand 8C, type G8 strument wit er atmosphe 8C, type G8 R-sensor an	e G999P were added ler applied. The EPL M ards listed on page 1. 88S, type G999C, type h a built in power-sup fric conditions. 88S, type G999C, or ty d 1 sensor of Flampph	ta requiremen (G998\$, type Iv battery . it is be/G999\$ con bof Enclosure	te for the G999E or Used for the de tains	
	The Gas detector type G99			11111111111	ティックはないともとたわれずない。	8//////
	The measurement values a alarm, an audible alarm and	re shown on	a built-in display. If thi	OMOHOR		897777
	A radio module for wireless type G888C, type G888S, ty					
	The gas detector type G888 type G999P is powered by a area.					rdous
	The gas detector type G999 a built-in pump.	9C, type G99	9S, type G999E or typ	e G999P cont	ains additionally	l.
	Listing of all components us (optionally used in type G88					
	Subject and type		Certificate		ndards	
		Si	ra 07ATEX1088X		79-0:2006	
	Gas Sensor type A			EN BOU	179-1:2004	

15.3	Parameters	
15.3.1	Power supply battery in type G888C or type G888	· · · · · · · · · · · · · · · · · · ·
	Nominal voltage Nominal capacity	2.6 V 2100 m
	Maximum charging voltage Un	
15.3.2	Power supply battery in type G999C or type G999	S or type G999E or type G999P
	Nominal voltage Nominal capacity	5.2 V 2100 m/
	Maximum charging voltage Un	
15.3.3	Optionally radio module	
	Frequency range (depend on module type)	865.0 – 868.6 MI 865.0 – 870.0 MI
		902.0 92.0 M
	Nominal RF output power Maximum RF output power	< 35 m) < 250 m)
15.3.4	Ambient temperature range	-20 °C ≤ T _e ≤ +50
	· · · · · · · · · · · · · · · · · · ·	
16	Report Number	
	BVS PP 15.2110 EU, as of 2018-01-02	
17	Special Conditions for Use	
	The measuring function according to annex II para not part of this supplement to the EU-type Examina	
	For Gas detector type G888C, G999C, G999S/us	「テディティティティキティティティティアに行っていたけなどが必要がないない」
	The gas detector may only be used in potentially e- means, that the device has to be carried on the bo- that mechanical stress by impact is avoided. It is in danger according to EN 60079-9.	dy or has not be discarded unattended, so ///
	The gas detector has to be immediately removed fi when it is contaminated with oils and greases of by	
18	Essential Health and Safety Requirements	
	The Essential Health and Safety Requirements are	e covered by the standards listed under item f
19	Drawings and Documents	
	Drawings and documents are listed in the confiden	itiał report
		//////////////////////////////////////
	irm the correctness of the translation from the Germi ise of arbitration only the German wording shall be v	
	DEKRA EXAM GmbH Bochum, dated 2018-01-02 BVS-Rip/Nu A 20170400	
	11	A + M
	////	1/ 11 12
	Certifier	Approver
	Columer	
	Page 3 of 3 of BVS 15 ATEX This certificate may only be reproduced in its	X E 064 X / N3