

GfG Instrumentation

Worldwide manufcaturer of gas detection solutions

TR 1005: G450 and G460 Multi-gas detectors

Advanced Confined Space User Training

February 27, 2013

www.gfg-inc.com

Copyright © 2013 by GfG Instrumentation, Inc. All rights reserved.

GfG Instrumentation Tel:

(800) 959-0329 or (734) 769-0573 (734) 769-1888 E-mail: info@gfg-inc.com Website: www.gfg-inc.com

Fax:

TR1005_2_27_13

 This training press does not replace Owner's Manual Make sure the G4 instrument is use maintained in conformance with confined space p requirements Read and unders G460 Owner's Ma before use! 	G460 confined	space training
January 14, 2013	G460 confined space instrument user training	Slide 2

Concentration	Effect
> 23%	Oxygen enrichment
20.90%	Normal air concentration
19.50%	Minimum "safe level"
16%	First sign of anoxia appears
16 – 12%	Breathing and pulse rate increase, muscular co-ordination is slightly impaired
14 – 10%	Consciousness continuous; emotional upsets, abnormal fatigue upon exertion, disturbed respiration
10 – 6%	Nausea and vomiting, inability to move freely and loss of consciousness may occur
< 6%	Convulsive movements and gasping occurs, respiration stops

	Toxic effects of H ₂ S				
Toxic effects of H2S					
Concentration	Symptoms				
0.13 ppm	Minimal detectable odor				
4.6 ppm	Easily detectable, moderate odor				
10.0 ppm	Beginning eye irritation.				
27 ppm	Strong unpleasant odor but not intolerable				
100 ppm	Coughing, eye irritation, loss of smell after 2-5 min				
200 – 300 ppm	Marked eye inflammation, rapid loss of smell, respiratory tract irritation, unconsciousness with prolonged exposure				
500 – 700 ppm	Loss of consciousness and possible death in 30 to 60 min				
700 – 1,000 ppm	Rapid unconsciousness, stopping or pausing of respiration and death				
1,000 – 2,000 ppm	Immediate unconsciousness, death in a few minutes. Death may occur even if person is moved to fresh air				

Toxic exposure limits for H2S			
	8-hour TWA	15-minute STEL	Ceiling
USA NIOSH	10	15	NA
USA OSHA Confined Space (1910.146)	10	NA	NA
ACGIH TLV (Old)	10	15	NA
ACGIH TLV (2010)	1	5	NA

Toxic effec	ts of carbon monoxide
25 ppm	TLV exposure limit for 8 hours (TWA)
200 ppm	Possible mild frontal headaches in 2-3 hours
400 ppm	Frontal headaches and nausea after 1-2 hours.
800 ppm	Headache, dizziness and nausea in 45 min. Collapse and possibly death in 2 hours
1,600 ppm	Headache and dizziness in 20 min. Unconsciousness and danger of death in 2 hours
3,200 ppm	Headache and dizziness in 5-10 min. Unconsciousness and danger of death 30 min.
6,400 ppm	Headache and dizziness in 1-2 min. Unconsciousness and danger of death 10-15 min
12,800 ppm	Unconsciousness immediately, danger of death in 1-3 min.

Explosive limits	
 Lower Explosive Limit (LEL): Minimum concentration of a combustible gas or vapor in air which will ignite if a source of 	Above UEL mixture too rich to burn
ignition is present	•
Upper Explosive Limit (UEL):	Flammable range
MOST DUT NOT All COMDUSTIBLE GASES have an upper explosive limit	¥
 Maximum concentration in air which will support combustion Concentrations which are above the UEL are too "rich" to burn 	Below LEL mixture too lean to burn
	GIE

to form an ignita	able mixture	
	Degrees F	Degrees C
Gasoline (aviation grade)	- 50 °F (approx.)	- 45 °C (approx
Acetone	0 °F	- 18 °C
Methyl ethyl ketone	24 °F	- 4 °C
Ethanol (96 %)	62 °F	17 °C
Diesel oil	100 - 190 °F	38 - 88 °C

Combustible gas / vapor	Relative response when sensor calibrated on pentane	Relative response when sensor calibrated on propane	Relative response when sensor calibrated on methane
Hydrogen	2.2	1.7	1.1
Methane	2.0	1.5	1.0
Propane	1.3	1.0	0.7
n-Butane	1.2	0.9	0.6
n-Pentane	1.0	0.8	0.5
n-Hexane	0.9	0.7	0.5
n-Octane	0.8	0.6	0.4
Methanol	2.3	1.8	1.2
Ethanol	1.6	1.2	0.8
Isopropanol	1.4	1.1	0.7
Acetone	1.4	1.1	0.7
Ammonia	2.6	2.0	1.3
Toluene	0.7	0.5	0.4
Gasoline (unleaded)	1.2	0.9	0.6

Correction factors for 4	P-75 catalytic LEL se	nsor	
	Relative response	Relative response	Relative response
Combustible gas / vapor	when sensor	when sensor	when sensor
	calibrated on pentane	calibrated on propane	calibrated on methane
Hydrogen	0.45	0.59	0.91
Methane	0.50	0.67	1.00
Propane	0.77	1.00	1.54
n-Butane	0.83	1.11	1.67
n-Pentane	1.00	1.33	2.00
n-Hexane	1.11	1.43	2.22
n-Octane	1.25	1.67	2.50
Methanol	0.43	0.57	0.87
Ethanol	0.63	0.83	1.25
Isopropanol	0.71	0.95	1.43
Acetone	0.71	0.95	1.43
Ammonia	0.38	0.50	0.77
Toluene	1.43	2.00	2.86
Gasoline (unleaded)	0.83	1.11	1.67

	Combustible sensor limitations								
Contaminant	LEL (Vol %)	Flashpoint Temp (°F)	OSHA PEL	NIOSH REL	TLV	5% LEL in PPM			
Acetone	2.5% -4°F 1,000 PPM (-20 °C) TWA		1,000 PPM TWA	250 PPM TWA	500 PPM TWA; 750 PPM STEL	1250 PPM			
Diesel (No.2) vapor	0.6%	125°F (51.7°C)	None Listed	None Listed	15 PPM	300 PPM			
Ethanol	3.3%	55°F (12.8 °C)	1,000 PPM TWA	1000 PPM TWA	1000 PPM TWA	1,650 PPM			
Gasoline	1.3%	-50°F (-45.6°C)	None Listed	None Listed	300 PPM TWA; 500 PPM STEL	650 PPM			
n-Hexane	1.1%	-7°F (-21.7 °C)	500 PPM TWA	50 PPM TWA	50 PPM TWA	550 PPM			
lsopropyl alcohol	2.0%	53°F (11.7°C)	400 PPM TWA	400 PPM TWA; 500 PPM STEL	200 PPM TWA; 400 PPM STEL	1000 PPM			
Kerosene/ Jet Fuels	0.7%	100 – 162°F (37.8 – 72.3°C)	None Listed	100 mg/M3 TWA (approx. 14.4 PPM)	200 mg/M3 TWA (approx. 29 PPM)	350 PPM			
MEK	1.4%	16°F (-8.9°C)	200 PPM TWA	200 PPM TWA; 300 PPM STEL	200 PPM TWA; 300 PPM STEL	700 PPM			
Turpentine	0.8	95°F (35°C)	100 PPM TWA	100 PPM TWA	20 PPM TWA	400 PPM			
Xylenes (o, m & p isomers)	0.9 - 1.1%	81 – 90°F (27.3 – 32.3 °C)	100 PPM TWA	100 PPM TWA; 150 PPM STEL	100 PPM TWA; 150 STEL	450 – 550 PPM			

Effects of high concentrations	20.9 0	×LEL 0.0 0
 When doing atmospheric testing we are only concerned with the LEL. Why is that? Work is not permitted in areas where the concentration of gas exceeds safety limits! If the explosive gas concentration is too high there may not be enough oxygen for the LEL sensor to detect properly Concentrations above 100% LEL can damage the LEL sensor (arrows) at 10% LEL 	20.9 20.9 20.9 20.9 20.9 0 4 20.9 0 4 20.9 0 4 20.9 0 4 20.9 0 4 20.9 0 4 20.9 0 4 20.9 0 0 4 20.9 0 0 4 20.9 0 0 0 4 20.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000) 20000 20000 20

							E rad	Electro iation	omagn spect	netic rum
wavelenght (Nanometer) 700 visible Light				 Infrared (IR) region covers the wavelength range from approx. 0.7 μm to 100 μm More than 100 times as wide as the visible portion! 				7 μm to e		
			700			In Sp	fra ect	red- rum		100.000

	Ionization Energy Va	lues
		1400
Ionization energy values		
Gas / vapor	Ionization energy (eV)	
Carbon monoxide	14.01	
Carbon dioxide	13.77	
Methane	12.98	
Water	12.59	
Oxygen	12.08	
Chlorine	11.48	
Hydrogen sulfide	10.46	
n-Hexane	10.18	
Ammonia	10.16	
hexane (mixed isomers)	10.13	
acetone	9.69	
benzene	9.25	
butadiene	9.07	
toluene	8.82	
		GiG
, 2012 CC LEL and NDIR com	bustible sensor performance Slide 84	

 Wir det ope PID lamp 	ndow mat ermine of erational i character	terial and utput cha life of lan istics	the fille aracteris np	r gas tics as w	rell as	
Nominal amp photon	Primary gas in lamp	Major emission lines		Relative intensity	Window crystal	Crystal transmittance λ range (nm)
		eV	λ (nm)			
11.7 eV	Argon	11.83	104.8	1000	Lithium fluoride (LiF)	105 - 5000
		11.62	106.7	500		
10.6 eV	Krypton	10.64	116.5	200	Magnesium fluoride (MgF ²)	115 - 7000
		10.03	123.6	650		
9.8 eV	Krypton	10.03	123.6	650	Calcium fluoride (CaF ₂)	125 - 8000

	PID as "Broad-Range" Se	ensor
 Vé sé Bi gé cc Cá th Pi si 	OCs usually detected by means of broad-range ensors road-range sensors provide overall reading for eneral class or group of chemically related ontaminants annot distinguish between different contaminants ey are able to detect rovide single total reading for all detectable ubstances present	
November 1, 2012	CC LEL and NDIR combustible sensor performance Slide 88	GE

oxalmiolles of mainlufatorium	er PID corr	ection fac	tors (10.	6 eV lamr)	
Gas / vapor	RAE	BW	lon	GfG	IE (eV)	
Acetaldehyde	5.50	4.60	4.90	5.40	10.21	
Acetone	1.10	0.90	0.70	1.20	9.69	
Ammonia	9.70	10.60	8.50	9.40	10.20	
Benzene	0.50	0.55	0.50	0.53	9.25	
Butadiene	1.00	0.90	0.85	0.69	9.07	
Diesel fuel	0.80	0.93	0.75	0.90	n/a	
Ethanol	12.00	13.20	8.70	10.00	10.48	
Ethylene	10.00	11.00	8.00	10.10	10.52	
Gasoline	0.90	0.73	1.10	1.10	n/a	
n-Hexane	4.30	4.00	3.30	4.50	10.18	
Jet fuel (JP-8)	0.60	0.51	0.70	0.48	n/a	
Kerosene	n/a	1.11	0.80	n/a	9.53	
Methyl-ethyl-ketone (MEK)	0.90	0.78	0.77	0.90	9.53	
Naptha (iso-octane)	1.20	1.20	1.10	1.30	9.82	
Styrene	0.40	0.45	0.45	0.40	8.47	
Toluene	0.50	0.53	0.51	0.53	8.82	
Turpentine	0.40	0.45	0.45	0.45	n/a	
	2.00	2 10	2 20	1 90	10.00	

	m	easure	Sel ement c	ection of comb	matrix oustible	for Sen gas ar	isors fo nd VOC	or s
	Able to detect LEL range C1 - C5 hydro- carbon gases (methane, ethane, propane, butane, pentane and natural gas)	Able to detect LEL range C6 – C9 hydro- carbon gases (hexane, heptane, octane, nonane)	Able to accurately detect LEL range heavy fuel vapors (e.g. diesel, jet fuel, kerosene, etc.)	Able to detect heavy fuel vapors in low ppm range (e.g. diesel, jet fuel, kerosene, etc.)	Able to use in low oxygen atmospheres	Vulnerable to sensor poisons (e.g. silicones, phosphine, tetraethyl lead, H2S, etc.)	Able to use for high range combustible gas measurement (100 % LEL and higher)	Able to measure H2
Standard Pellistor type LEL sensor	Yes	Yes	No	No	No	Yes	No	Yes
NDIR combustible gas sensor	Yes	Yes	Yes	Yes*	Yes	No	Yes	No
PID (with standard 10.6 eV lamp)	No	Yes ^{tt}	Yes [™]	Yes	Yes	No	No	No
Electrochemical H2 sensor	No	No	No	No	Yes	No	No	Yes
Thermal Conductivity Sensor	Yes	Yes	No	No	Yest	No	Yes	Yes
November	1, 2012	CC LEL a	and NDIR com	bustible sens	or performanc	ie S	lide 97	

Same states to a
Operations Manual
CICG Instrumentation 194 dar Willer (or. 820. Junn Artor Markor U.S. 1900 959 0529 - 0738 769 0573 - www.aftp-inc.com

Alarm Type	Sensors	Number of Alarms	Description
Instantaneous Value (AL)	Oxygen Combustible gases Toxic gases	3 3 2	An instantaneous alarm is activated immediately if the gas concentration exceeds or falls below a pre-set threshold. The alarm values are adjustable.
Short Term /alue (STEL)	Toxic gases	1	The short-term value (STEL) is the average concentration over a short period of time (e.g. 15 minutes). The STEL alarm is not latching; it resets automatically as soon as the concentration falls below the threshold.
ong Term ⁄alue (TWA)	Toxic gases	1	The long-term value (TWA) refers to an 8-hour shift and calculates the average concentration. The TWA alarm cannot be reset. It is only de-activated if the detector is switched off.

		Peak Reading Mode
 Main screet concentrati Press "Peal 	n shows the current gas ons k" once put instrument	03 35 PM 02 XLEL 20.9 0.0 0 0 0 125772 (25574) 5770
into "Peak" • Icon in disp reading mo	reading mode Iay indicates when in peak de	10 Max Peak 10 6 Rom Has 0 0
 Press "Res readings 	et" to clear the peak	
 Press "Peal operation 	k" to return to normal	
 Note: after to normal g 	<i>15 minutes G450 returns as reading screen</i>	्रमान
January 14, 2013	G460 confined space instrument user tr	raining Slide 148

Viewing Peak, S for e	STEL and TWA readings ntire monitoring interval	03 37 PM %LEL CH4
 The instrument ca and TWA readings interval (the period instrument has be Press "Zoom" to n press and hold "Zo seconds (till instru Display will now s toxic sensors; Max Min O2 	n also display Peak, STEL for the entire monitoring d of time that the en turned on) nake numbers larger, then com" for approximately 2 ument beeps) how Max, STEL, TWA for c combustible gas, and	(REAK) (RESET) (2000) 10 56 Am Max Readout 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15*STEL 8h TWA 195618 (RESET) 10*SY AM Min 10*SY AM Min
 Press "Zoom" to a to the next 	dvance from one sensor	II 01 AM Max Readout O.O O.O I RELEVENT (25AK) (RESED (2000)
January 14, 2013 G460 c	onfined space instrument user training	Slide 150

Automatic deep discharge cycle	And Adaptatic are active and a second and a
 It is possible to program the instrument so the deep discharge cycle is always automatically activated whenever the instrument is placed in the charger when the battery is below 10% remaining voltage From "Options" choose "Anti-Lazy-Battery" then press "Change" to activate the one-time deep discharge cycle (display will show "1X") 	Celin nar Celin and Celin and
 Press "Change" again to choose "Days" Anytime the instrument is placed in the charger when there is less than 10% remaining voltage the deep discharge cycle will be activated automatically 	Anti-Lazy-Batt. Running DOTORIAL CONTRACTOR
January 14, 2013 G460 confined space instrument user training	

	GG Data Download Software -	G450 Typical R Window Help	eport showing Q	lund Mox respon	e.GDF]			_10
			1					
	Datalogger Seriaino.: 0	G450						
Bump Test	Date Time	CO	CH4	02 Vol*	H2S	Event	Signal	
•	3/17/2010 1:59:36 PH	0	0.0	20.9	0.0		off	
	3/17/2010 1:59:37 PM	0	0.0	20.9	0.0		Off	
Response of	3/17/2010 1:59:38 PH	0	0.0	20.9	0.0		Off	
	3/17/2010 1:59:39 PB	2	9.0	20.9	0.0		Off	
sensors to Quad	3/17/2010 1:59:40 PM		9.0	20.9	0.0		orr	
N	3/17/2010 1:59:41 PM	7	18.5	20.9	0.0		off	
WIX (Tadie)	3/17/2010 1:59:42 PM	11	18.5	20.9	0.0		off	
. ,	3/17/2010 1:59:43 PM	19	27.0	20.9	0.8		orr	
	3/17/2010 1:59:44 PM	82	27.0	20.9	2.2		Off	
Readinas	3/17/2010 1:59:45 PM	92	34.5	20.9	4.0		Off	
	3/17/2010 1:59:46 PH	106	34.5	20.7	6.8		011	
recorded while	3/17/2010 1159147 Ph	119	40.0	19.6	9.8		OFF	
	3/17/2010 1:59:48 PH	130	40.0	19.4	12.4		OFT	
instrument	2/12/2010 1:59:49 PH	140	42.5	19.2	13.2		OFF	
	3/17/2010 1:59:30 PR	153	45.0	19.1	14.0		orr	
operated in	3/17/2010 1:59:51 PM	160	45.0	18.9	14.0		Off	
	3/17/2010 1:59:53 PR	166	46.5	18.8	15.2		off	
lormai gas	3/17/2010 1:59:54 PM	171	46.5	18.8	15.6		011	
anding mode	3/17/2010 1:59:55 PM	175	47.5	18.7	15.0		Off	
reauting mode	3/17/2010 1:59:56 PM	179	47.5	18.7	16.0		orr	
-	3/17/2010 1:59:57 PM	181	47.5	18.6	16.4		orr	
• "	3/17/2010 1:59:58 PM	184	47.5	18.6	16.6		Off	
wnen a sensor is	3/17/2010 1:59:39 PM	186	47.5	18.5	16.8		orr	
	3/17/2010 2:00:00 PM	188	47.5	18.5	17.0		orr	
n alarm readings	3/17/2010 2:00:01 PH	189	47.5	18.5	17.0		011	
	3/17/2010 2:00:02 PM	191	47.5	18.4	17.2		off	
are recorded in	3/17/2010 2:00:03 PM	193	47.5	18.4	17.2		orr	
ad	3/17/2010 2:00:04 PM	194	47.5	18.4	17.4		Off	
eu	Line: 1 from: 404	_						
	tout a a a a			IN 1024	Inc. ID.	Ad ODF	later II n.e	
				2.00	Contraction of the second	Manuel Janes		
								h h h h h h
	<u> </u>						<u> </u>	

 Use single sensor calibration procedure whenever you need to calibrate one sensor at a time Press and hold "Reset" button to show the "Main Menu" then chose "Service" For "Security Code" use "1100" as the password Choose "Sensors" then select the sensor that you intend to calibrate 	Main menu User logger Contidence blip Stavios Hutotas Options Security code
	<1100> CTOTE CONTRACTOR CONTRACTO
Make sure to use "1100" as password. "1100" is a special password that allows a wider maximum calibration adjustment window.	Sensor Menu Sensor Menu Oz CH4 H2S CO

	Single sensor calibration procedure (part 3	A) CO(EC2)-MENU
To perform a fresh air a	zero:	Harms Calibration dates Information
 Make sure the sensitive contaminant free a 	sor is exposed to fresh, ir	CO(EC2)-ZERO Readout: 4 ppm ZeroGas: 0 ppm Signal: stable
 Make sure to remo using the surround 	ve the cal adapter if you are ling air to adjust the sensor	(STARI) (GAS) (EXIII) COLECO-ZERO
The "Zero" screen	will show the current reading	X
Press "Start" to be	gin the fresh air adjustment	ABORT
 An "OK" indicates complete, after wh "Zero" screen 	when the procedure is ich the screen returns to the	COKEC2D-SPAN
You MUST s fresh air or they will no instrument	save the results of the calibration adjustment or t be saved to the s memory!	EU(EC2)-ZERU Readout: Ø ppm ZeroGas: Ø ppm Sienal: stable STARD (543) (541)
January 14, 2013 G460	confined space instrument user training	Slide 178

 To perform a span Calibration: Choose the sensor to be calibrated Choose "Calibrate" from the menu Make sure the calibration adapter, calibration gas and regulator are attached the instrument The "Span" calibration screen shows the 	02 CH4 H2S CO SELECT) (EXI Zero Delabrate Alarmation Information Unto SELECT) (EXI
 Choose the sensor to be calibrated Choose "Calibrate" from the menu Make sure the calibration adapter, calibration gas and regulator are attached the instrument The "Span" calibration screen shows the 	to Selection (Still CO(EC2)-MENU Zero Delicipate Alarms Calibration dates Information Selection (Still Still Calibration (Still Stil
 Choose "Calibrate" from the menu Make sure the calibration adapter, calibration gas and regulator are attached the instrument The "Span" calibration screen shows the 	to
 Make sure the calibration adapter, calibration gas and regulator are attached the instrument The "Span" calibration screen shows the 	Zero Calibrate Alarms Calibration dates Information Set Salara (SX)
The "Span" calibration screen shows the	
"CalGas" concentration that the instrumen will use to adjust the sensor	nt Readoutt DB PP
 Verify the concentration of gas in the cylinder matches the "CalGas" value 	STARD GAS (381
 If needed, you can adjust the "CalGas" value by selecting "Gas" then using the arrow (↑↑ or ↓↓) buttons to change the concentration 	Readout: 200 pp Catoo: 200 pp Signal: stabl
 Press "Exit" after you finish adjusting the "CalGas" concentration 	213) (536) (6 76

DS400 Docking Station

- Bump-Test includes:
 - Visual alarm function
 - Audible alarm function
 - Time for activation to alarm 1
 - Time for activation alarm 2
 - Time to t50
- Calibration Test Includes:
 - Fresh air zero adjustment
 - Span calibration adjustment
- All test results:
 - Stored to instrument memory
 - Stored to flash memory card in Docking Station
- January 14, 2013

G460 confined space instrument user training

What to do if instrument fails bump test Red color warning screen and message • indicates bump test failed This means instrument needs to be ٠ "Autocal" adjusted before further use Remove instrument from Dock, and press • "Reset" (center) control button to clear alarm message Place instrument back in Dock Before end of count down press Autocal • button January 14, 2013 G460 confined space instrument user training

	Using the motorized sample pump
Sampling Rules	
 Maximum recommended samp distance 300 feet (100 meters) 	ling with
 1 second per foot of tubing (3 seconds per meter) 	
 2 minutes sample time (set response) 	nsor
Confined Space sampling:	
 Top, Middle, Bottom (at a minimum, sample at every 4 ft. interval) 	
January 14, 2013 G460 confined space in:	strument user training Slide 194

	Advanced user options: Oxygen "Sensor" menu
 Oxygen sensors have three user adjustable alarm settings Alarms 1 and 2 are normally "descending" alarms that are activated by the concentration falling below the alarm value Alarm 3 is an "ascending" alarm that is activated by the concentration rising above the alarm value Highlight the desired alarm, then press "Edit" to change the value Press "Exit" to accept the new value and return to the O2 sensor menu 	O2(EC3)-MENU Zero Calibrate Alarms Calibration dates Information O2(EC3)Alarm O2(EC3)Alarm O2(EC3)Alarm Alarm1 1981Vol2 Alarm2 Alarm2 Alarm3 23.0 Vol2 Alarm3 Calibrate O2(EC3)Alarm O3(EC3)Alarm
WARNING: Setting an alarm value to () turns the alarm off. When the alarm is turned off the user will not be notified in the event of an alarm. This could result in injury or death.	02(EC3)Alarm Alarm 1 19.6 V012 Alarm 2 17.6 V012 Alarm 3 23.6 V012 W EXIT M
January 14, 2013 G460 confined space instrument user tra	aining Slide 204

e follo	wing CC LEL sensor	" "gas and unit" choices are available as set ""	р
oices i	in the on-board librai	y.	
	CC LEL Gas List	Common Name	
	CH4	Methane	
	H2	Hydrogen	
	CH4O	Methanol	
	C3H8	Propane	
	C2H6O	Dimethylether	
	Acetone	Acetone	
	C3H8O	Isopropyl Alcohol	
	C3H6O2	Methyl Acetate	
	C4H10	Butane	
	EtActat	Ethyl Acetate	
	n-Butanol	n-Butyl alcohol	
	C5H12	Pentane	
	MEK	Methyl Ethyl Ketone	
	МІВК	Methyl Isobutyl Ketone	
	n-Hexane	n-Hexane	

	Gas	Relative response (compared to CH4)	Correction factor
	Acetone	0.70	1.43
	Acetylene	0.900	1.11
Additional catalytic LEL	Ammonia	1.40	0.71
sensor response factors	1, 3-Butadiene	0.60	1.67
sensor response ractors	n-Butane	0.65	1.54
	Carbon monoxide	1.20	0.83
 Listed responses are for 	Cyclohexane	0.50	2.00
guidance only	Ethyl acetate	0.55	1.82
Deletive veenene veties	Ethyl alcohol	0.85	1.18
Relative response ratios	Ethylene	0.90	1.11
may differ from sensor to	Gasoline (unleaded)	0.60	1.67
the life of the sensor	Gasoline (leaded)	0.60	1.67
the me of the sensor	n-Heptane	0.45	2.22
Cumulative exposure to	n-Hexane	0.55	1.82
sensor poisons and / or	Hydrogen	1.10	0.91
inhibitors may also affect	Isobutylene	0.80	1.25
the relative response ratios	Isopropyl alcohol	0.65	1.54
The velotive very success	Methane	1.00	1.00
Ine relative response values have been rounded	Methyl alcohol	0.85	1.18
to the percent 5%	Methylethylketone	0.55	1.82
to the hearest 5%	n-Octane	0.35	2.86
	n-Pentane	0.55	1.82
	Propane	0.65	1.54
January 14, 2013	Propylene	0.87	1.15
- ·	Toluene	0.40	2.50

	PID sensor menu
 PID sensor choices include "Range and Gas" Use to choose correction 	Sensor menu Sensor
factor for new gas from PID library	H₂S <mark>iButyln</mark> CO
 PID readings displayed in measurement units of gas selected 	
 Name of gas selected will appear in the sensor menu PID position 	- Range and Gas - 0-2000ppm iButyln 0-2000ppm Gasolin 0-2000ppm MIBK
 In normal operation screen will show name of new gas 	0-2000ppm Deether 0-2000ppm Propyln
	- CIC.

PID sensor "Gas and Unit" library choices			
PID Gas List	Common Name	Range with 0 – 2000 ppm	Range with 0 – 500 ppm
Abbreviations		full range PID (ISO)	full range PID (ISO)
iButyIn	Isobutylene	0 – 2000	0 – 500
VOC	Generic VOC with user assigned CF	0 – 2000	0 – 500
Gasolin	Gasoline	0 – 2000	0 – 500
MIBK	Methyl-iso-butyl-ketone	0 – 2000	0 – 500
Acetone	Acetone	0 – 2000	0 – 500
Deether	Diethylether	0 – 2000	0 – 500
Propyln	Propylene	0 – 2000	0 – 500
MEK	Methyl-ethyl-ketone	0 – 1500	0 – 375
Diesel	Diesel	0 – 1500	0 – 375
TrClEyn	Trichloroethylene	0 – 1000	0 – 250
Benzene	Benzene	0 – 1000	0 – 250
Toluene	Toluene	0 – 1000	0 – 250
Xylene	Xylene	0 – 1000	0 – 250
Styrene	Styrene	0 - 800	0 – 200
Jetfuel	Jet fuel (JP-8)	0 - 800	0 – 200
nButnol	n-Butyl-alcohol	0 - 6000	0 – 1500
EtActat	Ethyl acetate	0 - 6000	0 – 1500
nHexane	n-Hexane	0 - 6000	0 – 1500
NH3	Ammonia	0 - 6000	0 – 1500
cHexane	Cyclo hexane	0 – 3000	0 – 750
VyChlrd	Vinyl chloride (VCM)	0 - 3000	0 – 750
MeBromd	Methyl bromide	0 - 3000	0 – 750
nNonane	n-Nonane	0 - 3000	0 – 750
Octane	Octane	0 - 3000	0 - 750
Heptane	Heptane	0 - 3000	0 – 750

