

Robert E. Henderson

Speaker Biography

Bob Henderson is the President of GfG Instrumentation, Inc., a leading supplier of portable and fixed gas detection products. GfG's instruments are used in atmospheric monitoring applications all over the world.

Robert has over 38 years of experience in the design, marketing and manufacture of gas detection instruments. Robert is a past Chairman, and in-coming Chair of the AIHA Real Time Detection Systems Technical Committee. He is also a past Chairman and current member of the AIHA Confined Spaces Committee. He is also a past Chair of the Instrument Products Group of the ISEA. Robert has a BS in biological science and an MBA from Rensselaer Polytechnic Institute.

ΑΙΗςεεχρ202ι

Signal to noise ratio of EC sensors

- Electrochemical amperometric gas sensors have a background current in addition to the current from the oxidation or reduction of the gas to be detected
- This background current is commonly referred to as zero current or "noise"
- Noise is random (stochastic) fluctuation of the electrical signal around a central value
- Noise is measured by the Root-Mean-Square (RMS) value of the fluctuations over time.
- The SNR is defined as the average over time of the peak signal divided by the RMS noise.
- When significant, can interfere with measurements at low gas concentrations.

ΑΙΗςεεχρεοει

	Relative responses of City Technology 4S – Rev. 2 sulfur dioxide (SO ₂) sensor at 20°C			
ignal: 0.5 ± 0.1 μA/ppm	Gas	Concentration	Reading (ppm	
ear signal over wide range:		used (ppm)	<i>SO2)</i>	
$0.1 \mu A = 0.2 \text{ ppm}$	Carbon monoxide (CO)	300	< 1	
	Nitric oxide (NO)	50	0 to 5.0	
1.0 μA = 2.0 ppm	Nitrogen dioxide (NO ₂)	6	< -10	
4.0 µA = 8.0 ppm	Hydrogen sulfide (H₂S)	25	< 0.1	
asurement range: 0-20 ppm SO ₂	Chlorine (Cl ₂)	5	< -2	
solution (electronics dependent): 0.1 ppm	Ammonia (NH₃)	20	0	
Response Time (T_{90}) : < 25 seconds	Hydrogen (H₂)	400	< 1	
	Hydrogen cyanide (HCN)	10	< 5	
	Acetylene (C ₂ H ₂)	10	< 30	
	Ethene (C₂H₄)	50	< 45	

L

electrochemical NO ₂ sensor at 20°	Relative response	es of Sensoric 4N	D CiTiceL NO2
Sensoric 4ND Citicel is three electrode design	Gas	Concentration used	Reading (ppm NO ₂)
Linear signal: 0.60 ± 0.15 mA/ppm	Alcohols	1000	0
Measurement range: 0-20 ppm NO ₂	Carbon dioxide	5000	0
Resolution (electronics dependent): 0.1 ppm	Chlorine	1	1
0.012 µA = 0.02 ppm	Nitric oxide (NO)	100	0.4
0.03 µA = 0.05 ppm	Sulfur dioxide	20	-5
0.06 µA = 0.1 ppm	(SO ₂)	20	0
Response Time (T_{90}): < 25 seconds	Hydrogen	3000	0
What about ozone?			
Not listed on sensor data sheet			
But interferes strongly (about 1.2)			
Equivalent concentration O_3 produces higher reading than NO_2			

ΑΙΗςεεχροοι

MAY 24-26 | DALLAS, TX | 15

	Suggested alarm settings for NO ₂
 Suggested alarms: OSHA PEL or NIOSH REL: Low: 3.0 ppm High: 5.0 ppm STEL: 1.0 ppm TWA: 1.0 ppm TLV[®]: Low: 0.6 ppm High: 1.0 ppm STEL: 0.6 ppm TWA: 0.2 ppm 	
ΑΙΗϲεεχρ202ι	MAY 24-26 DALLAS, TX 18

	Peak TWA STEL
Datalogging parameters	1 17:41:55 0.3 0 2 17:42:05 0.5 0 3 17:42:15 0.5 0 4 17:42:25 0.6 0 60 17:51:45 0 0 61 17:51:55 0 0
 Number of stored intervals in internal memory – set by manufacturer Datalogging interval (generally 1 sec. to 1 hr.) Logged values per interval (typically): User choice: Peak Average Representative STEL TWA How are the time history alarm calculations affected by the choice of data-logging interval? They're not! PEL calculations are continuously updated by the instrument 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
 The datalogging interval simply specifies how often the instrument stores a "snap-shot" of the current readings for the purposes of generating a printed report or 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Instrument B: Multi-sensor instrument with with O2, CO, H ₂ S, NO ₂ and SO ₂ sensors	NG2 * TWA (BHr) Mar Peak Mar STEL Court Peak Internal Alterns-Stoom	• 0.2 1.1 1.02 0	Instrument B - Multi-sensor instrument quipped with O2, CO, H ₂ S, NO ₂ and SO ₂ sensors Start session June 19, 1919 7:55 PM End session June 19, 1919 10:17 PM
 NO₂ results (actual logged, STEL and TWA) Low alarm: 3.0 ppm High alarm: ? STEL alarm: 1.0 ppm TWA alarm: ? TWA (projected): 0.2 ppm Peak reading during session: 2.4 ppm Session duration: 6.39 hrs. Session average: 0.1 ppm 	Cont YEAL Interval Alarms-2ppm Cont YEL Alarms-2ppm SO2 TWA (BH) Mas Peak Mas STEL Cont Peak Interval Alarms-2ppm Cot STEL Alarms-0.25ppm Cot STEL Alarms-0.25ppm Cot STEL Alarms-95ppm Cot STEL Ala	0 0 0 0 0 0 0 0 0 0 0 0 0 0	Summary table shows results for all installed sensors. Chart shows results for NO ₂ only. Datalog interval was 10 seconds. Logged NO ₂ value was the average resealing during each 10 second interval. The "MAX PEAK" value of 1.3 ppm in the summary table is logged and retained separately. There is a discontinuity in the logged STEL values around 10:00:01 PM. It looks like the instrument was zeroed and while still in the presence of NO ₂ gas. Later, the NO ₂ reading to 0 ppm, and resetting the STEL calculation to 0 ppm. The TWA calculation was not readed by these fresh air calculation of the strument was the sensor stabilized in air that contained less NO ₂ . It appears that the instrument was fresh air zeroed again about 10:10:50. The SO ₂ , H ₂ S and O ₂

	Resolution	Low	High	STEL	TWA
Instrument A	0.1 ppm	3.0 ppm	5.0 ppm	1.0 ppm	0.2 ppm
Instrument B	0.1 ppm	3.0 ppm	?	1.0 ppm	?
Instrument C	0.1 ppm	5.0 ppm	6.0 ppm	1.0 ppm	0.4 ppm

- When you have more than one type of instrument in service:
 - Make sure alarms match
 - Make sure datalogger settings match
 - Make sure you understand differences in the way the instruments record information and calculate alarms

ΑΙΗςεεχρεοει

