

Robert E. Henderson

Speaker Biography

Bob Henderson is the President of GfG Instrumentation, Inc., a leading supplier of portable and fixed gas detection products. GfG's instruments are used in atmospheric monitoring applications all over the world.

Robert has over 38 years of experience in the design, marketing and manufacture of gas detection instruments. Robert is a past Chairman, and in-coming Chair of the AIHA Real Time Detection Systems Technical Committee. He is also a past Chairman and current member of the AIHA Confined Spaces Committee. He is also a past Chair of the Instrument Products Group of the ISEA. Robert has a BS in biological science and an MBA from Rensselaer Polytechnic Institute.

ΑΙΗςεεχρεοει

MAY 24-26 | DALLAS, TX | 2

Real-time technologies for measuring LEL combustible gas

- Catalytic (CC) LEL
- Photoionization Detection (PID)
- Infrared (IR) LEL
- Thermal conductivity (TCD)
- Metal oxide semiconductor (MOS)
- Molecular properties spectrometer (MPS)

ΑΙΗςεεχροοι

MAY 24-26 | DALLAS, TX | 3

Explosive limits	
 Lower Explosive Limit (LEL): Minimum concentration of a combustible	Above UEL
gas or vapor in air which will ignite if a	mixture too rich
source of ignition is present	to burn
 Upper Explosive Limit (UEL): Most but not all combustible gases have	Flammable
an upper explosive limit	range
 Maximum concentration in air which will	Below LEL
support combustion Concentrations which are above the UEL	mixture too lean
are too "rich" to burn	to burn
HCEEXP2021	MAY 24-26 DALLAS, TX

	Fuel Ora			
	Fuel Gas	LEL (%VUL)	UEL (%VUL)	
	Acetylene	2.2	85	
Different cases have different	Ammonia	15	28	
flammability ranges	Benzene	1.3	7.1	
naninability ranges	Butane	1.8	8.4	
	Carbon Monoxide	12	75	
	Ethylene	2.7	.7 36 .0 100	
	Ethylene oxide	3.0 100		
Gas Concentration	Ethyl Alcohol	3.3	19	
Gas Concentration	Fuel Oil #1 (Diesel)	0.7	5	
Flammability	Hydrogen	4	75	
Kaige	Isobutylene	1.8	9	
t t	Isopropyl Alcohol	2	12	9 12
	Gasoline	1.4	7.6	
	Kerosine	0.7	5	
LEL UEL	Methane	5	15	
	MEK	1.8	10	
	Hexane	1.1	7.5	
	Pentane	1.5	7.8	
	Propane	2.1	10.1	
	Toluene	1.2	7.1	
	p-Xylene	1.1	7.0	

		sensor rela	ative responses
Relative responses of 4	P-75 catalytic LEL sen	sor	
Combustible gas / vapor	Relative response when sensor calibrated on pentane	Relative response when sensor calibrated on propane	Relative response when sensor calibrated on methane
Hydrogen	2.2	1.7	1.1
Methane	2.0	1.5	1.0
Propane	1.3	1.0	0.7
n-Butane	1.2	0.9	0.6
n-Pentane	1.0	0.8	0.5
n-Hexane	0.9	0.7	0.5
n-Octane	0.8	0.6	0.4
Methanol	2.3	1.8	1.2
Ethanol	1.6	1.2	0.8
Isopropanol	1.4	1.1	0.7
Acetone	1.4	1.1	0.7
Ammonia	2.6	2.0	1.3
Toluene	0.7	0.5	0.4
Gasoline (unleaded)	1.2	0.9	0.6

Values in the above table are for discussion only.

Correctio	n Factors
 Correction factor is the reciprocal of the relative response The relative response of 4P-75 LEL sensor (methane scale) to ethanol is 0.8 Multiplying the instrument reading by the correction factor for ethanol provides the true concentration Given a correction factor for ethanol of 1.25, and an instrument reading of 40 per cent LEL, the true concentration would be calculated as: 40 % LEL X 1.25 50 % LEL Instrument Correction True Reading 	
ΑΙΗςεεχρ202ι	MAY 24-26 DALLAS, TX 16

		Typi sensor co	cal catalytic LE
Correction factors for 4	P-75 catalytic LEL se	nsor	
Combustible gas / vapor	Correction factor when sensor calibrated on pentane	Correction factor when sensor calibrated on propane	Correction factor when sensor calibrated on methan
Hydrogen	0.45	0.59	0.91
Methane	0.50	0.67	1.00
Propane	0.77	1.00	1.54
n-Butane	0.83	1.11	1.67
n-Pentane	1.00	1.33	2.00
n-Hexane	1.11	1.43	2.22
n-Octane	1.25	1.67	2.50
Methanol	0.43	0.57	0.87
Ethanol	0.63	0.83	1.25
Isopropanol	0.71	0.95	1.43
Acetone	0.71	0.95	1.43
Ammonia	0.38	0.50	0.77
Toluene	1.43	2.00	2.86
Gasoline (unleaded)	0.83	1.11	1.67

Methane based equivalent calibration gas mixtures					
Combustible Gas / Vapor	Relative response when sensor is calibrated to 2.5% (50% LEL) methane	Concentration of methane used for equivalent 50% LEL response			
Hydrogen	1.1	2.75% CH4			
Methane	1.0	2.5% Vol CH4			
Ethanol	0.8	2.0% Vol CH4			
Acetone	0.7	1.75% Vol CH4			
Propane	0.65	1.62% Vol CH4			
n-Pentane	0.5	1.25% Vol CH4			
n-Hexane	0.45	1.12% Vol CH4			
n-Octane	0.4	1.0% Vol CH4			
Toluene	0.35	0.88% Vol CH4			

Values in the above table are for discussion only.

Effects of H ₂ S on c	ombustible gas sensors
H2S affects sensor as inhibitor AND as poison	
 Inhibitors like trichloroethane and methylene chloride leave deposit on active bead that depresses gas readings while inhibitor is present 	
 Sensor generally recovers most of original response once it is returned to fresh air 	4
 H2S functions as inhibitor BUT byproducts of catalytic oxidation become very corrosive if they build up on active bead in sensor 	4 0
 Corrosive effect can rapidly (and permanently) damage bead if not "cooked off" fast enough 	the can
How efficiently bead "cooks off" contaminants is function of:	State and the state of the stat
 Temperature at which bead is operated 	Contraction of the second
 Size of the bead 	
 Whether bead under continuous power versus pulsing the power rapidly on and off to save operating energy. 	
AIHCEEXP2021	MAY 24-26 DALLAS, TX 30

CC LEL sensors need time to warm up

- To reduce power consumption and improve IS and speed of response, size of pellistor bead much smaller in current generation CC sensors
- Volume of pellistor bead (a sphere): $V = 4/3 \pi r^3$
- Since most catalyst sites are within the bead (not on the surface of the bead), when you decease the radius of the bead by "x", you reduce the volume of the bead (and number of catalyst sites) by "x" to the third power (x³)
- So, smaller low power LEL sensors are easier to poison
- Because compensator bead is now so much larger compared to the active bead, takes longer for the beads to reach thermal equilibrium at the working temperature (≈ 550°C)

ΑΙΗςεεχροοι

MAY 24-26 | DALLAS, TX | 35

Calibration check

- "Calibration check" is a <u>quantitative</u> test using a traceable source of known concentration test gas to verify that the response of the sensors is within the manufacturer's acceptable limits
 - For instance, a manufacturer might specify that readings in a properly calibrated instrument should be within ±10% of the value of the gas applied
 - $\quad \mbox{If this is the pass / fail criterion, when 20} \\ \mbox{ppm H_2S is applied, readings must} \\ \mbox{stabilize between 18 ppm and 22 ppm in} \\ \mbox{order to pass the test} \\ \end{tabular}$
- Different manufacturers are free to publish different requirements

ΑΙΗςεεχροοι

MAY 24-26 | DALLAS, TX | 38

Perform "Bump Test" or "Calibration Check" before each day's use!

- Perform "Bump test" or "Calibration check" before each day's use in accordance with the manufacturer's instructions using an appropriate test gas
- Any instrument that fails test <u>must</u> be adjusted by means of a "full calibration" procedure before further use, or taken out of service
- If environmental conditions that could affect instrument performance are suspected, verification of calibration should be made on a more frequent basis
- Events that could adversely affect readings (e.g. dropping or immersion), should trigger reverification of fitness before further use

MAY 24-26 | DALLAS, TX | 39

ΑΙΗςεεχρεοει

			Combustible sensor limitations			
Contaminant	LEL (Vol %)	Flashpoint Temp (%F)	OSHA PEL	NIOSH REL	TLV	5% LEL in PPM
Acetone	2.5%	-4ºF (-20 ºC)	1,000 PPM TWA	250 PPM TWA	500 PPM TWA; 750 PPM STEL	1250 PPM
Diesel (No.2) vapor	0.6%	125⁰F (51.7⁰C)	None Listed	None Listed	15 PPM	300 PPM
Ethanol	3.3%	55⁰F (12.8 ⁰C)	1,000 PPM TWA	1000 PPM TWA	1000 PPM TWA	1,650 PPM
Gasoline	1.3%	-50ºF (-45.6ºC)	None Listed	None Listed	300 PPM TWA; 500 PPM STEL	650 PPM
n-Hexane	1.1%	-7⁰F (-21.7 ⁰C)	500 PPM TWA	50 PPM TWA	50 PPM TWA	550 PPM
lsopropyl alcohol	2.0%	53⁰F (11.7⁰C)	400 PPM TWA	400 PPM TWA; 500 PPM STEL	200 PPM TWA; 400 PPM STEL	1000 PPM
Kerosene/ Jet Fuels	0.7%	100 – 162⁰F (37.8 – 72.3⁰C)	None Listed	100 mg/M3 TWA (approx. 14.4 PPM)	200 mg/M3 TWA (approx. 29 PPM)	350 PPM
MEK	1.4%	16ºF (-8.9ºC)	200 PPM TWA	200 PPM TWA; 300 PPM STEL	200 PPM TWA; 300 PPM STEL	700 PPM
Turpentine	0.8	95⁰F (35⁰C)	100 РРМ TWA	100 PPM TWA	20 PPM TWA	400 PPM
Xylenes (o, m & p isomers)	0.9 - 1.1%	81 – 90⁰F (27.3 – 32.3 ⁰C)	100 PPM TWA	100 PPM TWA; 150 PPM STEL	100 PPM TWA; 150 STEL	450 – 550 PPM

Thermal conductivity (TCD) combustible gas sensors Specialized type of sensor most

- frequently used to detect high range concentrations of combustible gas (especially natural gas)
- Very similar to Wheatstone type LEL sensor, EXCEPT the active bead is not treated with catalyst
- Depend on differences in density of atmosphere to measure gas

ΑΙΗςεεχρεοει

45

R1

Active Bead

R2

Reference Bead

MAY 24-26 | DALLAS, TX | 45

Non-dispersive infrared (NDIR) sensors

- Many gases absorb infrared light at a unique set of wavelengths
- In NDIR sensors the amount of IR light absorbed is proportional to the amount of target gas present
- IR absorption has advantages of high sensitivity, low cross-sensitivity, long life, and resistance to contamination
- IR absorption employed in both very highperformance laboratory analyzers and in very lowperformance systems (e.g. inexpensive, nonintrinsically safe hand-held CO₂ detectors)

ΑΙΗςεεχροοι

MAY 24-26 | DALLAS, TX | 50

Non-dispersive infrared (NDIR) sensors

- When infra-red radiation passes through a sensing chamber containing a specific contaminant, only those frequencies that match one of the vibration modes are absorbed
- The rest of the light is transmitted through the chamber without hindrance
- The presence of a particular chemical group within a molecule thus gives rise to characteristic absorption bands
- Non-dispersive IR sensors measure at a specific range of wavelengths associated with a particular gas or class of gases

Beer-Lambert Law I_0 is the intensity of the incident light $I_1 = I_0^* e^{-\alpha Lc}$ I₁ is the intensity after passing through the material L is the distance that the light travels through the material (the path length) c is the concentration of I_1 absorbing species in the c, a material I_0 α is the absorption coefficient or the molar 1 absorptivity of the absorber Optical path-length matters... ΑΙΗςεεχρεοει MAY 24-26 | DALLAS, TX | 52

Infrared transmittance spectrum for ethanol (3800 to 500 cm⁻¹ range) Transmittance Geometry and specific 1.2 bonds in molecule give rise to IR spectrum 1 0.8 н н 0.6 но-с-с-н I. 1 -ОН нн (bending) 0.4 0.2 -CH (stretch) -CO (stretch) 0 Wavenumber (cm⁻¹) ΑΙΗςεεχροοι MAY 24-26 | DALLAS, TX | 54

NDIR sensor performance	MK231-5 CH4-Range and C3H8-Response
 When CH₄ is present, direct calibration to methane is the most conservative approach Calibration to CH₄ generally overestimates uncorrected readings for other aliphatic hydrocarbons; the higher the concentration the greater the overestimation 	80 560 a 500 a a a a a a a a a a a a a
 Calibration to other aliphatic hydrocarbons (such as propane or hexane) underestimates uncorrected readings for methane; 	MK231-5 C3H8-Range and CH4-Response
However, readings can be automatically corrected by choosing response curve from on-board library	
When other aliphatics are present, calibration to propane provides the most accurate response	0 30 30 30 30 30 30 30 30 30 3
ΑΙΗςεεχρ202ι	0 20 40 60 80 100 Concentration [%UEG]

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

	MPS principle of detection
 The Molecular Property Spectrometer (MPS) Flammable Gas Sensor's transducer is a micro- machined membrane with an embedded Joule heater and resistance thermometer 	Chemical resistant Ultem PEI housing with integrated dust screen
 MEMS transducer is mounted on a PCB and packaged inside enclosure open to ambient air 	Sensor Board (MPS + environ sensor)
 Parallel ridges in the MEMS transducer differentially trap gas molecules of different sizes 	CPU Board (MCU + drive electronics) Interface board – 5 pin connectors
 Joule heater used to rapidly heat atmosphere between the ridges 	Potting compound
 Presence of a flammable gas causes changes in the thermo-conductive properties of the air/ gas mixture that are measured by the transducer 	
 Sensor data are processed by algorithms to report concentration sorted into classes and concentrations of combustible gas 	
ΑΙΗςεεχρεοει	MAY 24-26 DALLAS, TX 70 70

Relationship between LEL concentration and molecular weight (density)

- Le Chatelier's mixing rule is commonly used for estimating the %LEL of mixtures of flammable gases in air
- It states the composite %LEL of a mixture depends on the mole fraction, x, of each gas present and each gas' current percentage of its respective lower-explosive-limit concentration:

$$\% LEL_{mix} = \frac{1}{\sum \frac{x_i}{\% LEL_i}}$$

- This relationship generally applies for average molecular weight as well; that is, a gas mixture with an average molecular weight equal to that of pentane will have a composite %LEL concentration similar to that of pentane
- Makes reading uniquely accurate for mixtures of flammable gas

ΑΙΗϲͼͼϫϷϩοϩι

MPS accuracy and	Gas	Formula	Detection Range	Accuracy (at 50 %LEL)
detectable gases	butane	C ₄ H ₁₀	0-100 %LEL	±5 %LEL
	ethane	C ₂ H ₆	0-100 %LEL	±5 %LEL
The MDS concer espekie of	hexane	C ₆ H ₁₄	0-100 %LEL	±8 %LEL
detecting most common flammable	hydrogen	H ₂	0-100 %LEL	±5 %LEL
gases/vapors	isobutane	HC(CH ₃) ₃	0-100 %LEL	±5 %LEL
 Accurate for methane across full environmental range 	isobutylene	C ₄ H ₈	0-100 %LEL	±5 %LEL
 Other gases typically meet published tolerances; but performance is optimized for accuracy near STP conditions 	isopropanol	C ₃ H ₈ O	0-100 %LEL	±10 %LEL
	methane	CH ₄	0-100 %LEL	±3 %LEL
	MEK	C ₄ H ₈ O	0-100 %LEL	±5 %LEL
 High concentration CO₂ or unusual background inert gas mixtures may affect readings 	octane	C ₈ H ₁₈	0-100 %LEL	±5 %LEL
	pentane	C ₅ H ₁₂	0-100 %LEL	±5 %LEL
	propane	C ₃ H ₈	0-100 %LEL	±5 %LEL
	propylene	C ₃ H ₆	0-100 %LEL	±5 %LEL
	toluene	C ₇ H ₈	0-100 %LEL	±10 %LEL
	xylene	C ₈ H ₁₀	0-100 %LEL	±10 %LEL

MAY 24-26 | DALLAS, TX | 74